

The Relative changes in the Steady States of Per-Capita Output of Some Typical "Middle Income Trap" Countries and China

Gang Liu

Associate Professor, Department of International Economy and Trade, School of International Business, Zhejiang International Studies University, No. 299, Liuhe Road, Xihu District, Hangzhou, Zhejiang, P. R. China. E-mail: lliugangg@hotmail.com

Article History

Received : 31 January 2023; Revised : 19 May 2023; Accepted : 28 August 2023; Published : 16 October 2023

Abstract: Based on a sample of 114 countries and regions, this paper uses the econometric method to show that, in terms of steady state of per-capita output, the relative positions of Brazil, Mexico, Malaysia, Turkey and South Africa in the sample generally remained slightly lower than the average level of the sample in the 1970-2019 period; China's relative position in the sample was extremely low in the 1970s, then continued to rise rapidly and caught up with the overall level of the above five countries in 2010s. Thus, even in terms of steady state of per-capita output, the above five countries were still typical "middle income trap" countries in the 1970-2019 period while China was not, but China started to face the "middle income trap" in 2010s. Next, combining the theory of convergence with the practical data of the above 5 countries and China, this paper analyses the reasons, respectively, for their different changes in the relative position in the sample. Finally, from the perspective of steady state of per-capita output, this paper gives some suggestions, respectively, for the above five countries and China to cross the "middle income trap" in the future.

Keywords: "middle income trap" country; China; steady state of per-capita output; conditional convergence; social infrastructure

1. INTRODUCTION

Many scholars have, from different perspectives, studied the reasons why some developing countries fell into and have been staying in the "middle income

To cite this paper:

Gang Liu (2023). The Relative changes in the Stready States of Per-Capita Output of Some Typical "Middle Income Trap" Countries and China. Asian Journal of Economics and Business. 4(2), 241-292. https:// DOI:10.47509/AJEB.2023.v04i02.06 trap", and actually they have made many valuable research results. For example, Kam (2014) believed that the productivity growth in Malaysian manufacturing sector was low and the lack of innovative capabilities of the Malaysian manufacturers undermined the industrial upgrading prospects. Luiz (2016) argued that South Africa was unlikely to move beyond middle-income status unless there was a dramatic policy shift which could bring appropriate investments and better human capital plan in the country. Ada and Acaroðlu (2016) expressed that Turkey could overcome the "middle income trap" if it attached enough importance for public spending on education for a better human capital growth. Foxley and Stallings (2016) stressed that Latin America needed greater institutional capacity to promote innovation which in turn increased productivity. Dabús, Tohmé, and Caraballo (2016) pointed out that once the world's demand for primary commodities did not increase or even decrease, Latin American countries that rely heavily on international prices of these commodities would fall into the "middle income trap". Paus (2019) argued that the current globalisation process had shifted the goal posts for middle-income countries and increased the urgency for Latin American countries to develop domestic innovation capabilities to improve their poor productivity performance. Topal (2020) indicated that economic and institutional reform requirements maintained their priority in the political agenda in most middle-income countries, especially in Latin American countries.

Based on the above findings, one could draw the following conclusion: after reaching the middle-income level, the above developing countries failed to realise the transformation of their economic development strategies and modes, which resulted in difficulties in their industrial upgrading and the lack of endogenous driving force for their economic growth. As a result, they have long been among the "middle income trap" countries. The above conclusion is certainly pertinent, but the work of these scholars can still be improved. The reason for that is the more convincing quantitative analysis (such as quantitative analysis of Econometrics) was obviously less in their research work, which directly affected the academic value of their research results. So the future research works should try to make up for this shortcoming.

This paper uses the econometric method to make a study on the "middle income trap" countries from the perspective of steady state of per-capita output, which results from the Solow model. As the Solow model shows, for a given period, an economy's per-capita output always converges toward its steady state of per-capita output in that period. It can also be inferred that developed countries' steady states of per-capita output are usually much higher than developing countries'. In addition, due to existence of capital accumulation and technological innovation, most countries (including developing and developed ones) experience growth in their steady states of per-capita output over time. The explanations for the above two statements will be given in Section 2. To catch up with developed countries, developing countries need to achieve a relative growth in the steady state of per-capita output, so it is worthwhile to investigate the relative changes in the steady states of per-capita output of important developing countries in a broad set of countries. For doing that, this paper builds an important concept: *the relative steady state of per-capita output*. The detailed explanation for this concept will be given as well in Section 2.

Through testing the hypothesis of conditional convergence, this paper obtained the estimates of the relative steady states of per-capita output of five typical "middle income trap" countries (Brazil, Mexico, Malaysia, Turkey and South Africa), China (the mainland of China, the same below) and the United States (as a representative of developed countries). These estimates were used to show the relative changes in the steady state of per-capita output of each of the above country in a test sample. Then, combining the theory of convergence with the practical data of the above countries, this paper made an analysis of the reasons for the relative changes in their steady states of per-capita output. Conclusions were given after a comparison of the five typical "middle income trap" countries and China.

The paper consists of seven sections. Section 1 is introduction. Section 2 is a brief review of previous studies on convergence. In Section 3, the regression equation to test the hypothesis of conditional convergence is described. In Section 4, the data and the empirical methodology used are described, and the details of results and analyses are also given. After Section 5 showing the paths of the relative steady states of per-capita output of the concerned countries, Section 6 provides an analysis of reasons for the relative changes in their steady states of per-capita output. Conclusions are given in Section 7.

2. A BRIEF REVIEW OF PREVIOUS STUDIES ON β-CONVERGENCE

Most economists did their studies on convergence which stemmed from the Solow's classical growth model. The Solow model proposed the concept of steady state of per-capita output, and Figure 1 shows the details. In Figure 1, for an economy in a given period, the capital per unit of effective labour k converges toward its steady state k^* , so the output per unit of effective labour f(k) converges toward its steady state $f(k^*)$. Further, the output per unit of labour (i.e., per-

capita output) Af(k) converges toward its steady state $Af(k^*)$, where A denotes the effectiveness of labour in the given period.

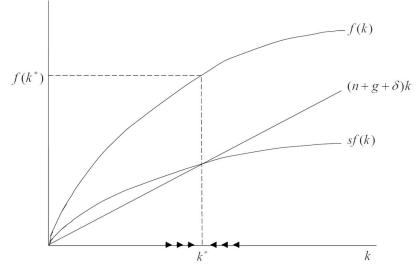


Figure 1: An economy's steady state in a given period

 β -convergence exists for a set of economies. It is named after the speed of convergence β and consists of absolute convergence and conditional convergence. Absolute convergence means, the selected economies have similar steady state of per-capita output to converge. Conditional convergence means, the selected economies have different steady states of per-capita output to converge, respectively. Conditional convergence is obviously more common in a set of economies, so the previous studies on β -convergence generally focused on conditional convergence.

By the way, there are some other models which can be used for convergence study. For example, Phillips & Sul (2007) established a new model providing a new method to investigate convergence, which is regarded as an important contribution in the field of convergence and has actually been used frequently by many economists. Actually Phillips & Sul (2009) used their method to show that the growths of developed and developing countries would converge to different levels through displaying relevant transition parameters. But their method did not involve the steady state mentioned in the Solow model, so all previous studies using the method of Phillips & Sul did not give any information on the steady state mentioned in the Solow model.

This paper provides a study on convergence based on the steady state mentioned in the Solow model. It is well known, as for the steady state mentioned in Solow model, many economists have found the evidence of conditional convergence (e.g., Baumol (1986), Barro (1991), Mankiw, Romer, and Weil (1992), Caselli, Esquivel, and Lefort (1996), Lee, Pesaran, and Smith (1997), Panik and Rassekh (2002), Mathur (2005), Mcquinn and Whelan (2007), Karras (2008), Cavenaile and Dubois (2011), Rath (2016), Stengos, Yazgan, and Ozkan (2018), etc), the main difference among their regression results focused on the estimate of the speed of convergence. But it is necessary to point out that their studies on convergence were made by using only one period rather than several successive sub-periods. The reason for that is most economists believed that the concept of convergence only applied to a long period, which consists of several decades or even hundreds of years. When talking about developing countries, they even argued that the lack of development was due to the distance to steady state, not the level of different steady states among countries. Their idea is still commonly recognised today, but this paper tries to make it possible to challenge their idea.

Firstly, the Solow model focuses on discussing the effects of some economic parameters on the steady state of per-capita output $Af(k^*)$. This model implies that, if the economic parameters (s, n) change or the effectiveness of labour (A) changes between two different periods, a country may experience a change in its the steady state of per-capita output between the two periods. In reality, a country's the economic parameters and the effectiveness of labour will change at times, so the idea that a country's steady state remains unchanged during a long period is possibly wrong.

Furthermore, since the changes in steady state of per-capita output are usually different across countries, there will be a *relative change* in steady state of per-capita output of a country among a set of countries. Thus, one needs to find an indicator for such a relative change. Suppose there is a test sample which includes N countries, and let Y_i^* denote the steady state of per-capita output of country

i for all *i* (*i* = 1, 2, 3, ..., *N*), so $Y_i^* = A_i f(k_i^*)$ holds for country *i* for all *i*. Let $\overline{Y^*}$ denote the average level of the *N* countries in the test sample, then $Y_i^* / \overline{Y^*}$ denotes *the relative steady state of per-capita output* of country *i* for all *i*, that is the ratio of the steady state of per-capita output of country *i* for all *i* to the average level of all countries in the test sample. If a change in this ratio is significant, it means there is a relative change in the steady state of per-capita output of country state of per-capita output of country *i* for all *i* to the average level of all countries in the test sample. If a change in this ratio is

output of country *i* for all *i* in the sample. In addition, the logarithmic version of this ratio, $\log(Y_i^*/\bar{Y}^*)$, can also be used to express the relative steady state of per-capita output of country *i* for all *i*, which is the operation of this paper.

Secondly, although the Solow model does not show whether a country is close to or obviously away from its steady state in a given period, it seems reasonable to believe a country is much possibly close to its steady state of per-capita output if the changes in its economic parameters (s, n) and effectiveness of labour (A) are not significant for several decades. In addition, according to the Solow model, even supposing there are no significant differences in economic parameters between developing and developed countries, one can believe that most developing countries are lower than developed countries in the steady state of per-capita output, for their effectiveness of labour are much lower than the level of developed countries.

Thirdly, the convergence theory does imply that an economy's steady state of per-capita output exists for a given period, but this theory does not specify the length of the given period. Theoretically, an economy's steady state of percapita output can exist in a relatively short period, such as a period of 10 years.

No matter whether a country is developing or developed, and whether it is close to or obviously away from its steady state, the country will always converge toward its steady state which may change over time, so it is surely worthwhile to investigate the relative changes in the steady state of a country among a broad set of countries. But the previously mentioned studies did not test the hypothesis of conditional convergence across successive sub-periods, so they did not assess whether there happened, across sub-periods, a significant change in a country's relative steady state of per-capita output. Such a change means a relative change in a country's steady state of per-capita output among a broad set of countries.

This paper undertakes such a study by testing the hypothesis of conditional convergence in a test sample of 114 countries and regions in 1970s, 1980s, 1990s, 2000s and 2010s. This paper also shows the paths of the relative steady states of per-capita output of five typical "middle income trap" countries (Brazil, Mexico, Malaysia, Turkey and South Africa), China and United States by using their estimates obtained in the above five successive sub-periods. A comparison of the seven paths provides some valuable information on the growths of the above seven countries.

3. THE REGRESSION EQUATION TO TEST THE HYPOTHESIS OF β -CONVERGENCE

The following equation was actually provided by Barro and Sala-I-Martin (2004). The only difference is that the equation on the page 466 of *Economic Growth*

(2004, 2nd ed.) shows the time interval T of observations is between year 0 and year T.

$$(1/T)\log(Y_{i,t}/Y_{i,t-T}) = \alpha_i - (1/T)(1 - e^{-\beta T})\log Y_{i,t-T} + u_{i,t}, \qquad (1)$$

where the subscript *t* denotes year *t*; the subscript *i* denotes economy *i*; *T* denotes the time interval of observations between year *t*-*T* and year *t*; $Y_{i,t}$ denotes percapita output of economy *i* for all *i* in year *t*, i.e., $Y_i = A_i f(k_i)$ holds for economy *i* for all *i*; β denotes the average speed of convergence for all economies in a sample for a given period; $\alpha_i = x_i + (1/T)(1 - e^{-\beta T})\log Y_i^*$, x_i denotes the technological progress rate of economy *i* for all *i* (i.e., $x_i = g_i$ holds for all *i*), the natural number $e \cong 2.718$, Y_i^* denotes the steady state of per-capita output of economy *i* for all *i* for a given period, so $Y_i^* = A_i f(k_i^*)$ holds for economy *i* for all *i* for the period. The equation (1) implies the average annual growth rate (from year *t*-*T* to year *t*) of per-capita output of economy *i* for all *i* depends positively on Y_i^* and negatively on $Y_{i,t-T}$.

In order to remove the time trend associated with the growth of technological progress (x_i) , Coulombe (2004) defined $y_{i,t} = \log(Y_{i,t} / \bar{Y}_t)$, where \bar{Y}_t is the cross section mean of $Y_{i,t}$ in year *t* for all *t*. With this definition, the equation (4) can be obtained by transforming the equation (1); the details are shown as follows.

Firstly, the equation (1) can be rewritten as

$$(1/T)(\log Y_{i,t} - \log Y_{i,t-T}) = \alpha_i - (1/T)(1 - e^{-\beta T})\log Y_{i,t-T} + u_{i,t}, \qquad (2)$$

Then take the mean over the number of economies N of this equation and obtain

$$\left(1/T\right)\left(\frac{1}{N}\sum_{i=1}^{N}\log Y_{i,t} - \frac{1}{N}\sum_{i=1}^{N}\log Y_{i,t-T}\right) = \frac{1}{N}\sum_{i=1}^{N}\alpha_{i} - (1/T)\left(1 - e^{-\beta T}\right)\frac{1}{N}\sum_{i=1}^{N}\log Y_{i,t-T} + \frac{1}{N}\sum_{i=1}^{N}u_{i,t-T}$$

or
$$(1/T)(\log \bar{Y}_t - \log \bar{Y}_{t-T}) = \alpha - (1/T)(1 - e^{-\beta T})\log \bar{Y}_{t-T} + \bar{u}_t$$
, (3)

where $\bar{Y}_{t} = \sqrt[N]{Y_{1,t}Y_{2,t}\cdots Y_{N,t}}$; $\bar{Y}_{t-T} = \sqrt[N]{Y_{1,t-T}Y_{2,t-T}\cdots Y_{N,t-T}}$; $\bar{\alpha} = \bar{x} + (1/T)(1 - e^{-\beta T})\log \bar{Y}^{*}$, $\bar{x} = (1/N)\sum_{i=1}^{N} x_{i}$ and $\bar{Y}^{*} = \sqrt[N]{Y_{1}^{*}Y_{2}^{*}\cdots Y_{N}^{*}}$; and $\bar{u}_{t} = (1/N)\sum_{i=1}^{N} u_{i,t}$. Finally, the equation (4) is obtained through the equation (2) minus the equation (3).

$$(1/T)\Delta y_{i,t} = c_i - (1/T)(1 - e^{-\beta T})y_{i,t-T} + \varepsilon_{i,t}$$
 (4)

where $\Delta y_{i,t} = y_{i,t} - y_{i,t-T} = \log(Y_{i,t}/\bar{Y}_t) - \log(Y_{i,t-T}/\bar{Y}_{t-T})$; $c_i = \alpha_i - \bar{\alpha} = (1/T)(1 - e^{-\beta T})y_i^*$ almost holds because both x_i and \bar{x} are positive and small enough so that the difference $x_i - \bar{x}$ can be neglected, $y_i^* = \log(Y_i^*/\bar{Y}^*)$, so y_i^* denotes the relative steady state of per-capita output (log version) of economy *i* for all *i*; and $\mathcal{E}_{i,t} =$

$$u_{i,t} - \overline{u}_t$$

In this paper, the equation (4) was used to test the hypothesis of β convergence. In the equation (4), c_i is the constant term of economy *i* for all *i*. In the case of conditional convergence, Y_i^* changes with *i*, then Y_i^* does not equal $\overline{Y^*}$ for most *i* or y_i^* does not equal zero for most *i*, thus c_i does not equal zero for most *i* or c_i is significant for most *i*. While in the case of absolute convergence, the reverse occurs c_i is not significant for most *i*.

4. DATA, THE EMPIRICAL METHODOLOGY, THE RESULTS AND THE ANALYSES

4.1. The data

World Bank provides data on GDP per-capita (constant 2010 US\$) for countries and regions around the world. The downloaded data on GDP per-capita cover the years from 1970 to 2019 and includes 114 countries and regions⁴ which are listed in *Appendix A* and whose data on GDP per-capita are available every year from 1970 to 2019.

4.2. The empirical methodology

Firstly, the above-mentioned data was regarded as a joint sample (the 1970-2019 sample), which consisted of the five sub-samples: the 1970-1979 sub-sample, the 1980-1989 sub-sample, the 1990-1999 sub-sample, the 2000-2009 sub-sample and the 2010-2019 sub-sample. There are both developed and less developed countries in each sub-sample, so conditional convergence should exist in each one.

Secondly, the regression results obtained by using the data in the five subsamples could provide an estimate of relative steady state of per-capita output of each country in 1970s, 1980s, 1990s, 2000s and 2010s, respectively. If the hypothesis of conditional convergence was tested in the five sub-samples separately, the five estimates of each country would be obtained separately. According to econometrics, without making a Wald test, one cannot simply use two estimates to judge whether the change in a variable or the difference between two variables is significant. To make Wald tests for the assessments, the five estimates of all countries must be obtained simultaneously so that all estimates can be associated with each other in the econometric software. To solve this problem, dummy variables could be introduced into the regression equation.

In the equation $(4),(1/T)(1-e^{-\beta T}) \cong \beta$ holds when β is a very small positive number, so the constant term $c_i = \beta y_i^*$ holds for country *i* for all *i*. Take one year as the time interval of observations used, i.e., T = 1 year, the equation (4) is rewritten as

$$\Delta y_{i,t} = c_i - \beta y_{i,t-1} + \varepsilon_{i,t} \tag{5}$$

Four dummy variables D1, D2, D3 and D4 were introduced into the equation (5) to capture, respectively, the changes in constant term c_i of country *i* for all *i* across sub-periods. Another four dummy variables DT1, DT2, DT3 and DT4 were introduced to find, respectively, the changes in the average speed of convergence β for all countries in the sample across sub-periods. In this way, the following equation can be obtained.

$$\Delta y_{i,t} = c_{i,0} + \gamma_{i,1}D1 + \gamma_{i,2}D2 + \gamma_{i,3}D3 + \gamma_{i,4}D4 - \beta_0 y_{i,t-1} + \lambda_1 DT1 y_{i,t-1} + \lambda_2 DT2 y_{i,t-1} + \lambda_3 DT3 y_{i,t-1} + \lambda_4 DT4 y_{i,t-1} + \varepsilon_{i,t}$$
(6)

where D1 = DT1 = 1 when data is in the 1980-1989 sub-sample, D1 = DT1 = 0otherwise; D2 = DT2 = 1 when data is in the 1990-1999 sub-sample, D2 = DT2= 0 otherwise; D3 = DT3 = 1 when data is in the 2000-2009 sub-sample, D3 = DT3 = 0 otherwise; D4 = DT4 = 1 when data is in the 2010-2018 subsample, D4 = DT4 = 0 otherwise; $c_{i,0}$ denotes the constant term (fixed effect) of country *i* for all *i* in 1970s; $\gamma_{i,1}$ denotes the gap between c_i in 1970s and 1980s for all *i*; $\gamma_{i,2}$ denotes the gap between c_i in 1970s for all *i*; $\gamma_{i,3}$ denotes the gap between c_i in 1970s and 2000s for all $i; \gamma_{i,4}$ denotes the gap between c_i in 1970s and 2010s for all i; β_0 denotes the average speed of convergence for all countries in the sample in 1970s; λ_1 denotes the gap between β in 1970s and 1980s; λ_2 denotes the gap between β in 1970s and 1990s; λ_3 denotes the gap between β in 1970s and 2000s; and λ_4 denotes the gap between β in 1970s and 2010s. Further, $c_{i,0}$, $(c_{i,0} + \gamma_{i,1}) = c_{i,1}$, $(c_{i,0} + \gamma_{i,2}) = c_{i,2}, (c_{i,0} + \gamma_{i,3}) = c_{i,3}$ and $(c_{i,0} + \gamma_{i,4}) = c_{i,4}$ denote the constant term of country i for all i in 1970s, 1980s, 1990s, 2000s, and 2010s, respectively; β_0 , $(\beta_0 - \lambda_1) = \beta_1$, $(\beta_0 - \lambda_2) = \beta_2$, $(\beta_0 - \lambda_3) = \beta_3$, $(\beta_0 - \lambda_4) = \beta_4$ denote the average speed of convergence for all countries in the sample in 1970s, 1980s, 1990s, 2000s and 2010s, respectively. After such an introduction of eight dummy variables, data in the five sub-samples was used jointly to estimate the equation (6) to obtain simultaneously the estimates of all above coefficients, this means it is feasible to obtain simultaneously the five estimates of relative steady states of per-capita output of all countries in the sample in the above five successive subperiods.

4.3. The results and the analyses

According to the definition of conditional convergence, if β_0 in the equation (6), β_1 , β_2 , β_3 and β_4 , which are implied in the equation (6), are all positive; $c_{i,0}$ in the equation (6), $c_{i,1}$, $c_{i,2}$, $c_{i,3}$ and $c_{i,4}$, which are implied in the equation (6), are all significant for most *i*, the hypothesis of conditional convergence cannot be rejected, respectively, in the 1970-1979 sub-sample, the 1980-1989 sub-sample, the 1990-1999 sub-sample, the 2000-2009 sub-sample and the 2010-2019 sub-sample.

Now make the following ten null hypotheses for the above five sub-samples: $H_0: \beta_0 = 0, H_0: c_{i,0} = 0; H_0: \beta_1 = 0, H_0: c_{i,1} = 0; H_0: \beta_2 = 0, H_0: c_{i,2} = 0;$ $H_0: \beta_3 = 0, H_0: c_{i,3} = 0; H_0: \beta_4 = 0, H_0: c_{i,4} = 0.$ The regression results obtained from estimating the equation (6) using data in the five sub-samples jointly are shown in *Appendix B*, and the regression results about Brazil, Mexico, Malaysia, Turkey and South Africa, China and United States are selected and shown in Table 1.

Method: GLS (Cr	oss Section Weigh	ate)		-	-	
Method: GLS (Cross Section Weights) Sample (adjusted): 1971 2019						
Included observat		stments				
Number of cross-s	sections included:	114				
Total pool (balance						
Variable	Coefficient	Estimates	Std. Error	t-statistic	p value	
${\mathcal Y}_{i,t-1}$	- β_0	-0.193381	0.041258	-4.687150	0.0000	
$DT1y_{i,t-1}$	λ_1	0.072969	0.049827	1.464443	0.1431	
$DT2y_{i,t-1}$	λ_2	0.000806	0.059595	0.013529	0.9892	
$DT3y_{i,t-1}$	λ_3	0.125194	0.047810	2.618578	0.0089	
$DT4y_{i,t-1}$	λ_4	0.044145	0.047281	0.933680	0.3505	
$C_0(BRA)$	$C_0(BRA)$	-0.038935	0.012127	-3.210495	0.0013	
D1 (BRA)	$\gamma_1(BRA)$	-0.004447	0.019268	-0.230782	0.8175	
D2(BRA)	$\gamma_2(BRA)$	-0.057058	0.019029	-2.998473	0.0027	
D3 (BRA)	$\gamma_3(BRA)$	0.010909	0.019224	0.567486	0.5704	
D4(BRA)	$\gamma_4(BRA)$	-0.036503	0.021156	-1.725425	0.0845	
$c_0(CHN)$	$c_0(CHN)$	-0.673089	0.149284	-4.508779	0.0000	
D1(CHN)	$\gamma_1(CHN)$	0.358790	0.170019	2.110291	0.0349	
D2(CHN)	$\gamma_2(CHN)$	0.258660	0.179484	1.441134	0.1496	
D3 (CHN)	$\gamma_3(CHN)$	0.587545	0.156993	3.973932	0.0001	
D4(CHN)	$\gamma_4(CHN)$	0.562153	0.151754	3.704379	0.0002	
$c_0(MEX)$	$C_0(MEX)$	-0.063913	0.018300	-3.492496	0.0005	
D1 (MEX)	$\gamma_1(MEX)$	0.012418	0.026273	0.472665	0.6365	
D2 (MEX)	$\gamma_2(MEX)$	-0.021504	0.028940	-0.743055	0.4575	
D3 (MEX)	$\gamma_3(MEX)$	0.013689	0.021505	0.636532	0.5245	
D4(MEX)	$\gamma_4(MEX)$	-0.024957	0.022820	-1.093623	0.2742	
$c_0(MYS)$	$c_0(MYS)$	-0.223053	0.056818	-3.925718	0.0001	
D1 (MYS)	$\gamma_1(MYS)$	0.109449	0.065681	1.666368	0.0957	
D2 (MYS)	$\gamma_2(MYS)$	0.092091	0.068271	1.348909	0.1774	
D3 (MYS)	$\gamma_3(MYS)$	0.185691	0.058642	3.166513	0.0016	
D4 (MYS)	$\gamma_4(MYS)$	0.165387	0.058394	2.832254	0.0046	
$c_0(TUR)$	$C_0(TUR)$	-0.123010	0.018541	-6.634603	0.0000	
D1(TUR)	$\gamma_1(TUR)$	0.048924	0.022437	2.180507	0.0293	
D2(TUR)	$\gamma_2(TUR)$	0.020144	0.031600	0.637467	0.5238	
D3 (TUR)	$\gamma_3(TUR)$	0.094700	0.019641	4.821570	0.0000	
D4(TUR)	$\gamma_4(TUR)$	0.100434	0.019974	5.028275	0.0000	
$c_0(USA)$	$c_0(USA)$	0.199378	0.042692	4.670105	0.0000	

Table 1: The selected regression results obtained from estimating the equation (6)

D1(USA)	$\gamma_1(USA)$	-0.064690	0.054067	-1.196488	0.2316
D2(USA)	$\gamma_2(USA)$	0.014198	0.064549	0.219949	0.8259
D3(USA)	$\gamma_3(USA)$	-0.129767	0.050865	-2.551186	0.0108
D4(USA)	$\gamma_4(USA)$	-0.040304	0.048932	-0.823685	0.4102
$C_0(ZAF)$	$C_0(ZAF)$	-0.088085	0.013689	-6.434616	0.0000
D1(ZAF)	$\gamma_1(ZAF)$	0.009201	0.023762	0.387221	0.6986
D2(ZAF)	$\gamma_2(ZAF)$	-0.087301	0.036817	-2.371223	0.0178
D3(ZAF)	$\gamma_3(ZAF)$	0.035947	0.025307	1.420404	0.1556
D4(ZAF)	$\gamma_4(ZAF)$	-0.053242	0.024067	-2.212231	0.0270
R-squared: 0.342	232				

In Table 1, the p value of the t-statistic for the estimate of β_0 shows H_0 : $\beta_0 = 0$ is rejected at the 1% significance level, and the estimate of β_0 shows β_0 is positive. In *Appendix B*, p values of t-statistics for most estimates of $c_{i,0}$ show H_0 : $c_{i,0} = 0$ is rejected at the 1% significance level. The regression results of β_0 and $c_{i,0}$ show the hypothesis of conditional convergence is not rejected in the 1970-1979 sub-sample.

The regression results obtained from estimating the equation (6) do not provide directly the information about β_1 , $c_{i,1}$, β_2 , $c_{i,2}$, β_3 , $c_{i,3}$, β_4 and $c_{i,4}$, but Wald tests can be used to get the information about them. Table 2 contains the main results of all Wald tests made in this paper, and the original details are shown in *Appendix C*.

In Table 2, the results of the Wald test of $H_0: \beta_1 = 0$ show the p value for the Chi-square is 0.0001, thus $H_0: \beta_1 = 0$ is rejected at the 1% significance level, and the estimate of β_1 ($\hat{\beta}_1 = \hat{\beta}_0 - \hat{\lambda}_1 = 0.119674$) is calculated using the estimates of β_1 and λ_1 shown in Table 1, so β_1 is positive. The Wald test of $H_0:$ $c_{i,1} = 0$ can be made on the country by country basis, but such a job is not done in this paper because of too many countries and districts in the sample. Since $c_{i,0}$ is significant for most *i* while $\gamma_{i,1}$ is not significant for most *i* according to p values of t-statistics for their estimates shown in *Appendix B*, one can infer $c_{i,1} (= c_{i,0} + \gamma_{i,1})$ is significant for most *i*, that is, if the Wald test of $H_0:$ $c_{i,1} = 0$ is done, the results would show $H_0: c_{i,1} = 0$ is rejected at the 5% or 10% significance level. Thus the information obtained about β_1 and $c_{i,1}$ show that the hypothesis of conditional convergence is not rejected in the 1980-1989 subsample.

1. Null Hypothesis: eta_1 :	= 0		
Chi-square	18.57513	p value	0.0000
2. Null Hypothesis: β_2	= 0		
Chi-square	20.05227	p value	0.0000
3. Null Hypothesis: β_3	= 0		
Chi-square	7.966911	p value	0.0048
4. Null Hypothesis: β_4	= 0		
Cni-square	41./0200	p value	0.0000
5. Null Hypothesis: y_1^* (BRA) - $y_0^*(BRA) = 0$		
Chi-square	2.1685/2	p value	0.1409
6. Null Hypothesis: y_2^* ($BRA) - y_1^* (BRA) = 0$		
6. Null Hypothesis: y_2^* (Chi-square	1.367203	p value	0.2423
7. Null Hypothesis: y_3^* (Chi-square			
Chi-square	0.569852	p value	0.4503
8. Null Hypothesis: y_4^* (Chi-square	$BRA) - y_3^* (BRA) = 0$		
Chi-square	0.587786	p value	0.4433
9. Null Hypothesis: y_0^* (Chi-square	BRA) = 0		
Chi-square	65.09192	p value	0.0000
10. Null Hypothesis: y_1^*	(BRA) = 0		
Cill Square	11.//1/)	p value	0.0006
11. Null Hypothesis: y_2^* Chi-square	(BRA) = 0		
		p value	0.0000
12. Null Hypothesis: y_3^* Chi-square	(BRA) = 0		
Chi-square	16.11826	p value	0.0001
13. Null Hypothesis: y_4^* Chi-square	(BRA) = 0		
Chi-square	54.30023	p value	0.0000
14. Null Hypothesis: y_0^* Chi-square	$(CHN) - y_0^*(BRA) = 0$		
		p value	0.0000
15. Null Hypothesis: y_1^*	$(CHN) - y_1^*(BRA) = 0$		
Ch1-square	229.4352	p value	0.0000
16. Null Hypothesis: y_2^*	$(CHN) - y_2^*(BRA) = 0$		
Chi-square	251.7001	p value	0.0000
17. Null Hypothesis: y_3^*	$(CHN) - y_3^*(BRA) = 0$		
Chi-square	126.0329	p value	0.0000
18. Null Hypothesis: y_4^*	$(CHN) - y_4^*(BRA) = 0$		
Chi-square	5.523785	p value	0.0188

Table 2: The results of all Wald tests made in this paper

Similarly, using the above method, one can know that β_2 , β_3 and β_4 are all positive; $H_0: c_{i,2} = 0, H_0: c_{i,3} = 0$ and $H_0: c_{i,4} = 0$ are all rejected at the 5% or

10% significance level. So the information obtained about β_2 , $c_{i,2}$, β_3 , $c_{i,3}$, β_4 and $c_{i,4}$ suggest the hypothesis of conditional convergence is not rejected in the 1990-1999 sub-sample, the 2000-2009 sub-sample and the 2010-2019 subsample.

As shown in Section 3, $y_i^* = \log(Y_i^* / Y^*)$ denotes the relative steady state of per-capita output (log version) of country *i* for all *i*. Let $y_{i,0}^*$, $y_{i,1}^*$, $y_{i,2}^*$, $y_{i,3}^*$ and $y_{i,4}^*$ denote the relative steady state of per-capita output of country *i* for all *i* in 1970s, 1980s, 1990s, 2000s and 2010s, respectively. As shown in Section 4.2, $c_i = \beta y_i^*$ holds for country *i* for all *i*, so the estimate of y_i^* can be computed by using the estimates of c_i and β in each sub-period. Now take Brazil's relative steady state of per-capita output y^* (*BRA*) as an example. Using the concerned estimates provided in Table 1, the details of the computation are shown as follows.

$$\hat{y}_{0}^{*}(BRA) = \hat{c}_{0}(BRA) / \hat{\beta}_{0} = -0.038935 / 0.193381 = -0.2013$$

$$\hat{y}_{1}^{*}(BRA) = \hat{c}_{1}(BRA) / \hat{\beta}_{1} = [\hat{c}_{0}(BRA) + \hat{\gamma}_{1}(BRA)] / (\hat{\beta}_{0} - \hat{\lambda}_{1})$$

$$= (-0.038935 - 0.004447) / (0.193381 - 0.072969) = -0.3605$$

$$\hat{y}_{2}^{*}(BRA) = \hat{c}_{2}(BRA) / \hat{\beta}_{2} = [\hat{c}_{0}(BRA) + \hat{\gamma}_{2}(BRA)] / (\hat{\beta}_{0} - \hat{\lambda}_{2})$$

$$= (-0.038935 - 0.057058) / (0.193381 - 0.000806) = -0.4984$$

$$\hat{y}_{3}^{*}(BRA) = \hat{c}_{3}(BRA) / \hat{\beta}_{3} = [\hat{c}_{0}(BRA) + \hat{\gamma}_{3}(BRA)] / (\hat{\beta}_{0} - \hat{\lambda}_{3})$$

$$= (-0.038935 + 0.010909) / (0.193381 - 0.125194) = -0.4106$$

$$\hat{y}_{4}^{*}(BRA) = \hat{c}_{4}(BRA) / \hat{\beta}_{4} = [\hat{c}_{0}(BRA) + \hat{\gamma}_{4}(BRA)] / (\hat{\beta}_{0} - \hat{\lambda}_{4})$$

$$= (-0.038935 - 0.036503) / (0.193381 - 0.044145) = -0.5054$$

Similarly, let y^* (*MEX*), y^* (*MYS*), y^* (*TUR*), y^* (*ZAF*), y^* (*CHN*) and y^* (*USA*) denote, respectively, relative steady states of per-capita output of Mexico, Malaysia, Turkey, South Africa, China and United States, one can compute their estimates by using the above method. All estimates of the seven countries are shown in Table 3.

Names of	Estimates	Estimates	Estimates	Estimates	Estimates
countries	in 1970s	in 1980s	in 1990s	in 2000s	in 2010s
Brazil	-0.2013	-0.3605	-0.4984	-0.4106	-0.5054
Mexico	-0.3305	-0.4277	-0.4434	-0.7364	-0.5956
Malaysia	-1.1534	-0.9435	-0.6802	-0.5484	-0.3867
Turkey	-0.6361	-0.6153	-0.5343	-0.4150	-0.1515
South Africa	-0.4555	-0.6553	-0.9107	-0.7639	-0.9471
China	-3.4806	-2.6105	-2.1516	-1.2543	-0.7433
United States	1.0310	1.1188	1.1090	1.0205	1.0662

Table 3: The estimates of relative steady states of per-capita output of the five "middle-income trap" countries, China and United States

In Table 3, the estimates of United States are all positive. United States is a typical developed country; its steady state of per-capita output Y(USA) is always higher than the average $\bar{y^*}$ of all sample countries, so its relative steady state of per-capita output $y^*(USA)$ is always significantly positive, actually around 1. The estimates of Brazil, Mexico, Malaysia, Turkey, South Africa and China are all significantly negative or near to zero as shown in Table 3 because they are all less developed countries.

How to assess whether a country's relative steady state of per-capita output y^* changes with time? Take $y^*(BRA)$ as an example and make the four null hypotheses: $H_0: y_1^*(BRA) - y_0^*(BRA) = 0$, $H_0: y_2^*(BRA) - y_1^*(BRA) = 0$, $H_0: y_3^*(BRA) - y_2^*(BRA) = 0$, $H_0: y_4^*(BRA) - y_3^*(BRA) = 0$. In Table 2, the results of the Wald test of $H_0: y_1^*(BRA) - y_0^*(BRA) = 0$ show that the p value for the Chi-square is above 10%, which means $H_0: y_1^*(BRA) - y_0^*(BRA) = 0$ is not rejected, i.e., the gap between $y^*(BRA)$ in 1970s and 1980s is possibly not significant. Thus Brazil's relative steady state of per-capita output possibly did not change significantly from 1970s to 1980s.

Similarly, according to the results of the Wald tests of H_0 : $y_2^*(BRA)$ -

 $y_1^*(BRA) = 0$, $H_0: y_3^*(BRA) - y_2^*(BRA) = 0$ and $H_0: y_4^*(BRA) - y_3^*(BRA) = 0$, all of the three null hypotheses are not rejected because their p values for the Chi-square are all above 10% as shown in Table 2. So it is possible that Brazil's relative steady state of per-capita output did not change significantly from 1980s to 1990s, from 1990s to 2000s, and from 2000s to 2010s.

The formula $y_i^* = \log(Y_i^* / Y^*)$ shows 0 is the average of relative steady states of per-capita output (log version) of all countries in the test sample. Now make

five null hypotheses: $H_0: y_0^* (BRA) = 0$, $H_0: y_1^* (BRA) = 0$, $H_0: y_2^* (BRA) = 0$, $H_0: y_3^* (BRA) = 0$, $H_0: y_4^* (BRA) = 0$. In Table 2, the results of the Wald tests show all above five null hypotheses are rejected at the 1% significance level because their p values for the Chi-square are all below 1%. As shown in Table 3, the five estimates of $y^* (BRA)$ are all negative, so Brazil's relative steady state of per-capita output is significantly below the average of all countries in the test sample in each of the five sub-periods.

How to assess whether a country's relative steady state of per-capita output differs from another's in the same period? Take y^* (*CHN*) and y^* (*BRA*) as an example and make five null hypotheses: $H_0: y_0^*$ (*CHN*) - y_0^* (*BRA*) = 0, $H_0: y_1^*$ (*CHN*) - y_1^* (*BRA*) = 0, $H_0: y_2^*$ (*CHN*) - y_2^* (*BRA*) = 0, $H_0: y_3^*$ (*CHN*) - y_3^* (*BRA*) = 0 and $H_0: y_4^*$ (*CHN*) - y_4^* (*BRA*) = 0. In Table 2, the results of Wald tests show all above null hypothesis are rejected at the 1% or 5% significance level according to their p values for the Chi-square. The estimates of y^* (*BRA*)

and y^* (*CHN*) are shown in Table 3, so one can judge China's relative steady state of per-capita output is lower than Brazil's in each sub-period.

5. THE PATHS OF RELATIVE STEADY STATES OF PER-CAPITA OUTPUT OF THE SEVEN COUNTRIES

The path of relative steady state of per-capita output of a country shows how the steady state of per-capita output of the country changes relatively in a test sample, i.e., in terms of steady state of per-capita output, it shows how the relative position of a country changes in a test sample. The path is obtained by using the estimates of the relative steady state of per-capita output of a country in some successive sub-periods. In this paper, the paths of Brazil, Mexico, Malaysia, Turkey, South Africa, China and United States are drawn by using their estimates in Table 3 and shown in Figure 2.

As shown earlier, $y_i^* = \log(Y_i^* / Y^*)$ is the formula for the relative steady state of per-capita output (log version) of country *i* for all *i*. In Figure 2, the horizontal axis is for such a hypothetical country: its relative steady state of percapita output always equals 0, i.e., its steady state of per-capita output always equals the average level of all countries in a test sample. A description of Figure 2 is shown as follows.

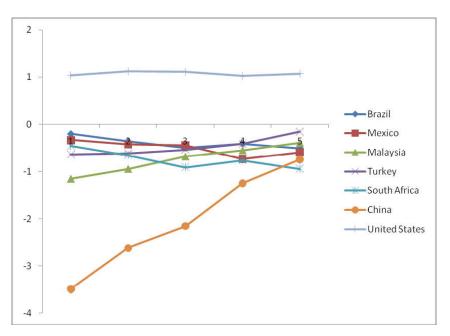


Figure 2: The paths of relative steady states of per-capita output of the five "middle-income trap" countries, China and United States (1970-2019)

Note: 1. The numbers 1, 2, 3, 4 and 5 below the horizontal axis denote 1970s, 1980s, 1990s, 2000s and 2010s, respectively. 2. The numbers at the left side of the vertical axis denote the measures of relative steady state of per-capita output.

In Figure 2, the path of the US is obviously above the horizontal axis, so it is a typical path of a developed country. Due to capital accumulation and technological progress, it is reasonable to believe the US's steady state of per-capita output kept growing from 1970s to 2010s, but the path of the US shows the US's relative steady state of per-capita output did not change significantly from 1970s to 2010s, i.e., in terms of steady state of per-capita output, the US's relative position in the test sample did not change significantly in the 1970-2019 period.

The paths of Brazil, Mexico, Malaysia, Turkey and South Africa are all below the horizontal axis, but generally not far apart. The five paths show that the relative steady states of per-capita output of the five countries generally fluctuated slightly from 1970s to 2010s, i.e., in terms of steady state of percapita output, their relative positions in the test sample did not change greatly on the whole from 1970s to 2010s. The above situation shows that even in terms of steady state of per-capita output, the five countries were not only developing countries but also typical "middle income trap" countries in the 1970-2019 period. The path of China is generally far below the horizontal axis. The path shows China's relative steady state of per-capita output was extremely low in 1970s, then it kept increasing dramatically, and almost caught up with the overall level of the above five countries in 2010s, i.e., in terms of steady state of per-capita output, China's relative position in the test sample kept rising significantly after 1970s, and almost reached the overall level of the above five countries in 2010s. The path of China suggests, in terms of steady state of per-capita output, China was a developing country but not a "middle income trap" country in the 1970-2019 period, or to be more exact, China started to face the "middle income trap" in 2010s.

6. AN ANALYSIS OF THE REASONS FOR THE RELATIVE CHANGES IN STEADY STATES OF PER-CAPITA OUTPUT OF THE SEVEN COUNTRIES

The Solow model shows that an economy's steady state of per-capita output depends on its economic parameters and effectiveness of labour. To be precise, it is an economy's social infrastructure that determines its steady state of per-capita output through influencing the economic parameters and the effectiveness of labour. As Romer described⁵, the social infrastructure refers to those institutions, policies, traditions and cultures, which can influence economic growth. Next, by looking up historical data of the five typical "middle income trap" countries, this paper will reveal how their social infrastructures determined their steady states of per-capita output ($Af(k^*)$) through influencing the saving rate (*s*), the population growth rate (*n*) and the effectiveness of labour (*A*) in the 1970-2019 period. In addition, in view of the need of the research made in this paper, the data of China, the United States and the world are also looked up.

First, look at the saving rate. The data on annual saving rates of the concerned countries and the world were downloaded from the World Bank database, and their average annual saving rates in the 1970s, 1980s, 1990s, 2000s and 2010 were calculated, respectively, and shown in Table 4. The data in Table 4 provides the eight paths in Figure 3, which reflects roughly the changes in the saving rates of the seven countries and the world in the 1970-2019 period.

Table 4 and Figure 3 show that in the 1970-2019 period, the world's saving rate did not change significantly. Among the five typical "middle income trap" countries, only Malaysia's saving rate was higher than the world level in each sub-period while the saving rates of other four countries were lower

than the world's at least in most sub-periods, thus, except Malaysia, the saving rates of the other four countries were generally lower than the world level, i.e., their saving rates might be lower than the average level of all sample countries. In addition, in the 1970-2019 period, Malaysia's saving situation was obviously better than that of other four countries, but Malaysia's saving rate was not high enough because the country did not keep its saving rate above 30% in this period. The convergence theory shows, other factors remain unchanged, a higher saving rate leads to a higher k^* and $f(k^*)$, and the converse is also true. The above situations show that the saving rates of the five countries were generally not high in the 1970-2019 period, this should be an important reason to explain why in this period, in terms of the steady state of per-capita output, the relative positions of the five countries in the test sample were always slightly lower than the average level of the test sample and also did not change greatly as a whole.

Names of countries	Averages in 1970s	Averages in 1980s	Averages in 1990s	Averages in 2000s	Averages in 2010s
Brazil	19.61	19.86	15.87	16.97	15.51
Mexico	21.82	24.61	20.93	21.7	22.68
Malaysia	26.75	27.81	34.73	35.72	29.29
Turkey	32.62	30.33	20.48	22.71	24.7
South Africa	27	23.32	15.78	16.59	16.07
China		35.43	39.21	44.66	46.74
United States	22.32	20.83	19.17	17.89	18.7
World	23.46	22.98	23.43	24.98	24.96

Table 4: The saving rates of the concerned countries and the world in the 1970-2019 period (%)

Note: The World Bank database lacks data on China's annual saving rate in 1970s, so China's average annual saving rate in 1970s is blank in Table 4.

Second, look at the population growth rate. The data on annual population growth rates of the concerned countries and the world are downloaded from the World Bank database, and their average annual population growth rates in the 1970s, 1980s, 1990s, 2000s and 2010 are calculated, respectively, and listed in Table 5. The data in Table 5 generate the eight paths in Figure 4, which reflects basically the changes in the population growth rates of the seven countries and the world in the 1970-2019 period.

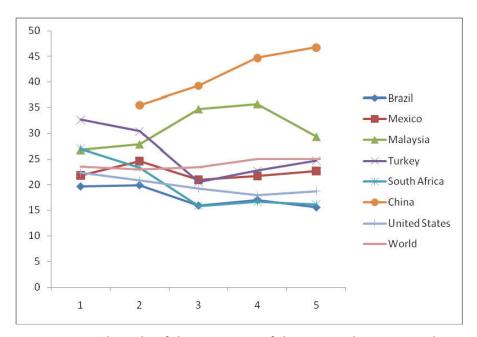


Figure 3: The paths of the saving rates of the concerned countries and the world (1970-2019)

Note: 1. The numbers 1, 2, 3, 4 and 5 below the horizontal axis denote 1970s, 1980s, 1990s, 2000s and 2010s, respectively. 2. The numbers at the left side of the vertical axis denote the measures (%) of saving rate. 3. The World Bank database lacks data on China's annual saving rate in 1970s, so there is one corresponding blank for China's path in Figure 3.

Names of countries	Averages in 1970s	Averages in 1980s	Averages in 1990s	Averages in 2000s	Averages in 2010s
Brazil	2.4	2.16	1.63	1.18	0.85
Mexico	2.81	2.2	1.68	1.43	1.26
Malaysia	2.44	2.64	2.57	2.02	1.41
Turkey	2.33	2.09	1.62	1.35	1.57
South Africa	2.58	2.56	2.1	1.3	1.49
China	1.97	1.44	1.13	0.61	0.49
United States	1.05	0.92	1.23	0.95	0.68
World	1.91	1.76	1.52	1.26	1.16

Table 5: The population growth rates of the concerned countries and the world in the 1970-2019 period (%)

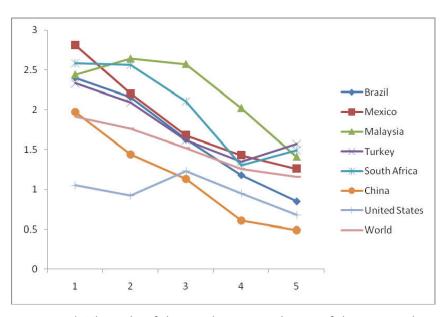


Figure 4: The paths of the population growth rates of the concerned countries and the world (1970-2019)

Note: 1. The numbers 1, 2, 3, 4 and 5 below the horizontal axis denote 1970s, 1980s, 1990s, 2000s and 2010s, respectively. 2. The numbers at the left side of the vertical axis denote the measures (%) of population growth rate.

Table 5 and Figure 4 show that in the 1970-2019 period, the world's population growth rate kept an obvious downward trend, and the population growth rates of the five typical "middle income trap" countries also showed a similar downward trend as a whole. According to the theory of convergence, other factors remain unchanged, a lower population growth rate leads to a higher level of k^* and $f(k^*)$, and the converse is also true. A downward trend in population growth rates of the five countries should be helpful to increase their $f(k^*)$. However, the world's population growth rate maintained a marked downward trend in the 1970-2019 period, it means most sample countries also experienced a similar downward trend in their population growth rates in this period, so logically the population growth rates of the five countries might not show a relative decline in the test sample. Thus, although the population growth rates of the five countries had a general downward trend, this might make no significant effect on improving the relative positions of the steady states of percapita output of the five countries in the test sample. On the other hand, as shown in Table 5 and Figure 4, during the 1970-2019 period, the population

growth rates of the five countries were actually higher than the world level (except Brazil in the 2000s and 2010s), it means that the population growth rates of the five countries might be higher than the average level of the test sample in this period. This situation is helpful to explain why in the 1970-2019 period, their relative positions of the steady states of per-capita output were always slightly lower than the average level of the test sample.

Finally, look at the labour efficiency (i.e., the effectiveness of labour mentioned in the Section 2). Labour efficiency (4) undoubtedly makes a huge effect on the steady state of per-capita output $Af(k^*)$. Human capital is the source of technological progress and innovation, so one can think of human capital as the most important indicator to measure labour efficiency. Unfortunately, since 2017 the World Bank's database has only begun to provide data on the human capital index of countries and regions around the world, thus this paper chose the tertiary school enrollment rate to roughly reflect the human capital level. The data on annual tertiary school enrollment rates of the concerned countries and the world were downloaded from the World Bank database, and their average annual tertiary school enrollment rate in 1970s, 1980s, 1990s, 2000s and 2010 were calculated, respectively, and listed in Table 6. The data in Table 6 give the eight paths in Figure 5, which shows the changes in the tertiary school enrollment rates of the seven countries and the world in the 1970-2019 period, and also roughly reflects the changes in the human capital and the labour efficiency of the seven countries and the world in this period.

Names of countries	Averages in 1970s	Averages in 1980s	Averages in 1990s	Averages in 2000s	Averages in 2010s
Brazil			16.08	26.99	43.46
Mexico	8.78	15.13	16.26	23.75	33.2
Malaysia	3.82	5.69	12.32	29.4	41.36
Turkey	6.87	8.34	18.9		
South Africa	4.33	12	13.82		20.99
China	0.5	2.44	4.21	16.61	40.09
United States	50.9	59.45	75.9	79.52	90.14
World	10.95	13.1	15.39	23.82	35.22

Table 6: The tertiary school enrollment rates of the concerned countriesand the world in the 1970-2019 period (%)

Note: The World Bank database lacks the data on Brazil's annual tertiary school enrollment rate in 1970s and 1980s, the data on Turkey's in 2000s and 2010s, and the data on South Africa 's in 2000s, so there are some corresponding blanks for them in Table 6.

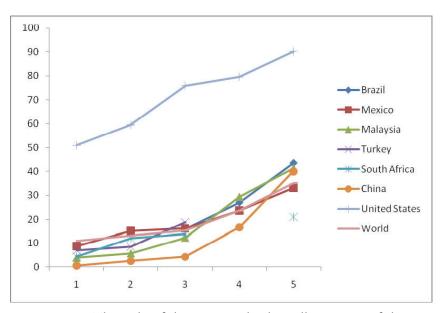


Figure 5: The paths of the tertiary school enrollment rates of the concerned countries and the world (1970-2019)

Note: 1. The numbers 1, 2, 3, 4 and 5 below the horizontal axis denote 1970s, 1980s, 1990s, 2000s and 2010s, respectively. 2. The numbers at the left side of the vertical axis denote the measures (%) of tertiary school enrollment rate. 3. The World Bank database lacks the data on Brazil in 1970s and 1980s, the data on Turkey's in 2000s and 2010s, and the data on South Africa 's in 2000s, so there are some corresponding blanks for them in Figure 5.

Table 6 and Figure 5 show that in the 1970-2019 period, the tertiary school enrolment rate of the world kept an obvious upward trend, so did the tertiary school enrolment rates of the five typical "middle income trap" countries, and both had a less difference as a whole. It can be inferred that in the 1970-2019 period, the human capital and labour efficiency of the five countries were constantly improving, which should be very helpful to increase the steady states of per-capita output of the five countries. However, the tertiary school enrolment rate of the world kept an obvious upward trend, it means that in this period, the tertiary school enrolment rates of most sample countries had a similar upward trend, so the human capital of the five countries might show no relative improvement in the test sample, and so did the labour efficiency of the five countries. Thus, the tertiary school enrolment rates of the five countries had a similar role in improving in the 1970-2019 period, but it might play no significant role in improving

the relative positions of steady states of per-capita output of the five countries in the test sample.

China's steady state of per-capita output maintained a significant relative growth in the test sample because the changes in China's indicators were completely different in the 1970-2019 period. As shown in Table 4 and Figure 3, in the 1970-2019 period, except in 1970s (the data on China's saving rate in 1970s is not available), China's saving rate kept rising and was much higher than the overall level of the five countries and the world level, and should be also much higher than average level of all sample countries. Table 5 and Figure 4 show that, China's population growth rate experienced a downward trend like the five countries' and the world's in the 1970-2019 period, but was lower than the overall level of the five countries, also lower than the world level (except almost equal the world level in the 1970s), and should be also lower than the average level of all sample countries. Finally, there happened a dramatic growth in China's tertiary school enrollment rate in the 1970-2019 period. As shown in Table 6 and Figure 5, China's tertiary school enrollment rate was extremely low (0.5%) in 1970s, but by 2010s it was higher than the world level and even caught up with the high-end level of the five countries, so it grew much faster than the five countries' and the world's, undoubtedly also much faster than most sample countries', and so did China's human capital and labour efficiency in this period. The above changes in China's indicators can explain why China's steady state of per-capita output kept growing rapidly and relatively in the test sample in the 1970-2019 period.

Finally, a brief analysis of the reasons for the situation in the United States is given. As shown in Table 4 and Figure 3, in the 1970-2019 period, the US's saving rate showed a slight downward trend, and was always lower than the world level, and might be also lower than the average level of all sample countries, so this certainly made a negative effect on the relative position of the US's steady state of per-capita output in the test sample. However, Table 5 and Figure 4 show that during this period, the US's population growth rate also had a slight downward trend and was always lower than the world level, and might be also lower than the average level of all sample countries. In addition, as shown in Table 6 and Figure 5, during this period, the US's tertiary school enrollment rate kept an obvious upward trend like the world's, more importantly, it was much higher than the world level, and should be also much higher than the average level of all sample countries, and so was US's human capital and labour efficiency in this period. The above changes in the US's population growth rate and tertiary school enrollment rate (especially the latter) surely made a significantly greater positive effect on the relative position of the US's steady state of per-capita output in the test sample, and actually played a dominant role. Thus, the net result from the changes in the US's indicators is that during the 1970-2019 period, the relative position of the US's steady state of percapita output in the test sample did not change significantly, and were always significantly higher than the average level of the test sample, and certainly also significantly higher than the relative positions of the five typical "middle income trap" countries and China.

7. CONCLUSIONS

Based on the theory of convergence, this paper used econometric method mainly revealing the followings: (1) In terms of steady state of per-capita output, the relative positions of Brazil, Mexico, Malaysia, Turkey and South Africa in the test sample generally remained slightly below the average level of the sample countries in the 1970-2019 period, i.e., in terms of steady state of per-capita output, the five countries were typical "middle income trap" countries in this period. (2) China's relative position in the test sample was far below the overall level of the five countries in 1970s, but kept rising rapidly since then, and almost reached the overall level of the five countries in 2010s, so in terms of steady state of per-capita output, China was not a "middle income trap" country in the 1970-2019 period, but started to face the "middle income trap" in 2010s.

This paper also provides an analysis of the reasons for the above situations. In general, the social infrastructures of the five typical "middle-income trap" countries did not change significantly in the 1970-2019 period, this resulted in the followings: in this period, their saving rates (except Malaysia's) should be lower than the average level of the sample countries; their population growth rates should be higher than the average level of the sample countries; their human capital did not significantly exceed the most sample countries, and nor did their labour efficiency. Therefore, if the five countries want to make their steady states of per-capita output increase relatively in the test sample in the future, their governments must formulate feasible and effective policies to improve their social infrastructures so as to significantly increase their saving rates, reduce further their population growth rates, and achieve a quicker growth of their human capital and labour efficiency, or the five countries will continue to stay in the "middle-income trap".

China's social infrastructure was improved significantly in the 1970-2019 period due to its many correct policies executed since the late 1970s, this resulted in the followings: in this period, China's saving rate maintained at a high level

and kept rising except in 1970s, actually much higher than the average level of the sample countries except in 1970s; China's population growth rate kept declining, actually lower than the average level of the sample countries; China's tertiary school enrollment rate was extremely low in 1970s, but it grew much faster than most sample countries', and so did China's human capital and labour efficiency. But it is necessary to point out, China's saving rate was already very high (46.74% in 2010s) and much difficult to increase further significantly, its population growth rate was already very low (0.49% in 2010s) and leaves little room to decrease further, but China's tertiary school enrollment rate was not high (40.09% in 2010s) in comparison with developed countries (e.g. the United States). So the Chinese government should pay more attention to promoting the growth of China's human capital and labour efficiency in the future. The future growth of China's human capital and labour efficiency will, to large extent, determine the future growth of China's steady state of per-capita output, which will decide whether China can smoothly cross the "middle income trap" after 2010s.

Notes

- 1. The typical "middle income trap" countries selected in this paper refer to those that were always "middle income trap" countries in the 1970-2019 period. After meeting this requirement and considering the geographical distribution of the selected countries, Brazil and Mexico were selected as representative countries in the America; Malaysia and Turkey were selected as representative countries in Asia; South Africa was chosen as the representative country in Africa. Since the World Bank database had not provided the percapita GDP data of Eastern European countries in 1970s and 1980s, in order to ensure the rigour of the regression results, the test sample used in this paper does not include the "middle income trap" countries in Europe (such as Bulgaria and Romania, etc.).
- 2. For more details of the Solow model, see Romer (2001, Chapter 1).
- 3. Romer, D. 2001. Advanced Macroeconomics. 2nd edition. New York: McGraw-Hill. P.21
- 4. World Bank provides data on GDP per-capita of countries and regions in the world from 1960 to 2019, but data in 1960s are not available for most countries, even data in 1970s are not available for some countries, so this paper has to choose the 114 countries and regions and a data time span from 1970 to 2019 to form a test sample.
- 5. See Romer (2001, p.143)

References

- Ada, A. A., & Acaroðlu, H. (2016). An empirical remark about the middle income trap problem for Turkey. *Research Journal of Politics, Economics & Management, 4*(3), 81-95.
- Barro, R. J. (1991). Economic growth in a cross-section of countries. Quarterly Journal of Economics, 106(2), 407-443.

- Barro, R. J., & Sala-I-Martin, X. (2004). *Economic Growth* (2nd edition). New York: McGraw-Hill.
- Baumol, W. J. (1986). Productivity growth, convergence, and welfare: What the long-run data show. *The American Economic Review*, 76(5), 1072-1085.
- Caselli, F., Esquivel, G., & Lefort, F. (1996). Reopening the convergence debate: A new look at cross-country growth empirics. *Journal of Economic Growth*, 1(3), 363-389. DOI: 10.1007/BF00141044
- Cavenaile, L., & Dubois, D. (2011). An empirical analysis of income convergence in the European Union. Applied Economics Letters, 18(17), 1705–1708. DOI: 10.1080/ 13504851.2011.560104
- Coulombe, S. (2004). Macroeconomics lecture. University of Ottawa, Canada.
- Dabús, C., Tohmé, F., & Caraballo, M.A. (2016). A middle-income trap in a small open economy: Modeling the Argentinean case. *Economic Modelling*, 53, 436-444. DOI: 10.1016/j.econmod.2015.10.042
- Foxley, A., & Stallings, B. (2016). Innovation and Inclusion in Latin America: Strategies to Avoid the Middle Income Trap. London: Palgrave MacMillan.
- Kam, A. J. Y. (2014). Revisiting the productivity growth and spillovers debate: the case of Malaysian manufacturing sector. *Journal of the Asia Pacific Economy*, 19(4), 656-681.
- Karras, G. (2008). Growth and convergence, 1950-2003. What Can We Learn from the Solow Model? *Applied Econometrics and International Development*, 8(1), 5-18.
- Lee, K., Pesaran, M. H., & Smith, R. (1997). Growth and convergence in a multi-country empirical stochastic Solow model. *Journal of Applied Econometrics*, 12(4), 357-392.
- Luiz, J. M. (2016). The political economy of middle-income traps: Is South Africa in a longrun growth trap? *South African Journal of Economics*, 84(1), 3-19.
- Mankiw, N. G., Romer, D., & Weil, D. N. (1992). A Contribution to the empirics of economic growth. *The Quarterly Journal of Economics*, 107(2), 407-437. DOI: 10.2307/ 2118477
- Mathur, S. K. (2005). Economic growth and conditional convergence: its speed for selected regions for 1961-2001. *Indian Economic Review*, 40(2), 185-208.
- Mcquinn, K., & Whelan, K. (2007). Conditional convergence and the dynamics of the capital-output ratio. *Journal of Economic Growth*, 12(2), 159-184. DOI: 10.1007/s10887-007-9013-3
- Panik, M. J., & Rassekh, F. (2002). A model of growth and convergence in the presence of input-enhancing factors: An empirical study. *Economic Inquiry*, 40(2), 158-165. DOI: 10.1093/ei/40.2.158
- Paus, E. (2019). Innovation strategies matter: Latin America's middle-income trap meets China and globalization. *Journal of Development Studies*, 56(4), 657-679. DOI: 10.1080/ 00220388.2019.1595600
- Phillips, P. C. B., & Sul, D. (2007). Transition modeling and econometric convergence tests. *Econometrica*, *75*(6), 1771-1855. DOI: 10.1111/j.1468-0262.2007.00811.x
- Phillips, P. C. B., & Sul, D. (2009). Economic transition and growth. *Journal of Applied Econometrics*, 24(7), 1153-1185. DOI: 10.1002/jae.1080

Rath, B. N. (2016). Does the digital divide across countries lead to convergence? New international evidence. *Economic Modelling*, 58, 75-82. DOI: 10.1016/ j.econmod.2016.05.020

Romer, D. (2001). Advanced Macroeconomics (2nd edition). New York: McGraw-Hill.

- Stengos, T., Yazgan, M. E., & Ozkan, H. (2018). Persistence in convergence and club formation. Bulletin of Economic Research, 70(2), 119-138. DOI: 10.1111/boer.12130
- Topal, M. H. (2020). The Middle Income Trap: Theory and Empirical Evidence. Bogazici Journal, Review of Social, Economic and Administrative Studies, Bogazici University, Department of Economics, 34(1), 51-75.

World Bank database. Retrieved from https://data.worldbank.org.cn/

Appendix A

The 114 Countries and Regions with Their Codes in the Sample

1. The name list of 29 developed countries and regions

Andorra—AND, Australia—AUS, Austria—AUT, Belgium—BEL, Canada—CAN, Switzerland—CHE, Germany—DEU, Denmark—DNK, Spain—ESP, Finland—FIN, France —FRA, United Kingdom—GBR, Greece—GRC, Greenland—GRL, Hong Kong— -HKG, Ireland—IRL, Iceland—ISL, Israel—ISR, Italy—ITA, Japan—JPN, Luxembourg— LUX, Monaco—MCO, Netherlands—NLD, Norway—NOR, New Zealand—NZL, Portugal—PRT, Singapore—SGP, Sweden—SWE, United States—USA

2. The name list of 85 developing countries

Argentina—ARG, Burundi—-BDI, Benin—BEN, Burkina Faso—-BFA, Bangladesh—-BGD, Bahamas-BHS, Belize-BLZ, Bolivia-BOL, Brazil-BRA, Botswana-BWA, Central African Republic--CAF, Chile-CHL, China-CHN, Cote d'Ivoire-CIV, Cameroon—-CMR, Congo, Dem. Rep.—-COD, Congo, Republic of —-COG, Colombia— -COL, Costa Rica—-CRI, Cuba—-CUB, Dominican Republic—-DOM, Algeria—-DZA, Ecuador—-ECU, Egypt—-EGY, Fiji—-FJI, Gabon—-GAB, Georgia—-GEO, Ghana —-GHA, Gambia—-GMB, Guinea-Bissau —GNB, Guatemala—-GTM, Guyana—-GUY, Honduras—-HND, Haiti—HTI, Indonesia—-IDN, India—-IND, Iran—-IRN, Iraq—-IRQ, Jamaica—-JAM, Kenya—-KEN, Kiribati —KIR, Korea, Republic of—-KOR, Sri Lanka—-LKA, Lesotho—-LSO, Morocco—-MAR, Madagascar—-MDG, Mexico—-MEX, Mali—-MLI, Malta—-MLT, Myanmar—-MMR, Mauritania—-MRT, Malawi—-MWI, Malaysia—-MYS, Niger—-NER, Nigeria—-NGA, Nicaragua—-NIC, Nepal—-NPL, Oman—-OMN, Pakistan—-PAK, Panama—-PAN, Peru—-PER, Philippines—-PHL, Papua New Guinea—-PNG, Puerto Rico—-PRI, Paraguay—-PRY, Rwanda—-RWA, Saudi Arabia—-SAU, Sudan—-SDN, Senegal—-SEN, Sierra Leone—-SLE, El Salvador—-SLV, Suriname—SUR, Swaziland—-SWZ, Seychelles—-SYC, Chad—-TCD, Togo—-TGO, Thailand—-THA, Trinidad & Tobago—-TTO, Tunisia—-TUN, Turkey—-TUR, Uruguay— -URY, St. Vincent and the Grenadines--VCT, South Africa--ZAF, Zambia--ZMB, Zimbabwe—-ZWE

Appendix B

The Regression Results from Estimating the Equation (6) (Outputs of Eviews)

Dependent Variable: D(Y?) Method: Pooled EGLS (Cross-section weights) Date: 08/01/21 Time: 23:20 Sample (adjusted): 1971 2019 Included observations: 49 after adjustments Cross-sections included: 114 Total pool (balanced) observations: 5586 Linear estimation after one-step weighting matrix White cross-section standard errors & covariance (d.f. corrected)

Var	iable	Confficient	Std Eman	t Statistic	Prob.
1 var	Y?(-1)	<i>Coefficient</i> C(1)= -0.193381	<i>Std. Error</i> 0.041258	<i>t-Statistic</i> -4.687150	0.0000
1	DT1*Y?(-1)	C(1) = -0.193381 C(2) = 0.072969	0.041238	-4.08/130	0.1431
	DT1 1:(-1) DT2*Y?(-1)	C(2) = 0.072969 C(3) = 0.000806	0.049827	0.013529	0.1431
	. ,				
e	$DT3^{*}Y?(-1)$	C(4) = 0.125194	0.047810	2.618578	0.0089
5	DT4*Y?(-1)	C(5) = 0.044145	0.047281	0.933680	0.3505
	AND—C	0.271399	0.069710	3.893285	0.0001
	ARG—C	-0.050771	0.016708	-3.038728	0.0024
	AUS—C	0.201802	0.047824	4.219635	0.0000
	AUT—C	0.190616	0.038714	4.923712	0.0000
	10 BDI—C	-0.699684	0.142295	-4.917156	0.0000
	BEL—C	0.184124	0.039325	4.682124	0.0000
	BEN—C	-0.501747	0.102466	-4.896714	0.0000
	BFA—C	-0.653104	0.134012	-4.873475	0.0000
	BGD—C	-0.665966	0.135407	-4.918261	0.0000
15	BHS—C	0.140782	0.020893	6.738232	0.0000
	BLZ—C	-0.311833	0.071099	-4.385875	0.0000
	BOL—C	-0.339140	0.063980	-5.300713	0.0000
	BRA—C	C(18)= -0.038935	0.012127	-3.210495	0.0013
	BWA—C	-0.297091	0.085622	-3.469783	0.0005
20	CAF—C	-0.544847	0.103422	-5.268208	0.0000
	CAN—C	0.201966	0.044869	4.501262	0.0000
	CHE—C	0.318145	0.068980	4.612162	0.0000
	CHL—C	-0.156884	0.048447	-3.238220	0.0012
	CHN—C	C(24)= -0.673089	0.149284	-4.508779	0.0000
25	CIV—C	-0.280008	0.057898	-4.836193	0.0000
	CMR—C	-0.398326	0.093412	-4.264170	0.0000
	COD—C	-0.470284	0.088137	-5.335855	0.0000
	COG—C	-0.304220	0.064920	-4.686077	0.0000
	COL—C	-0.187820	0.042145	-4.456568	0.0000
30	CRI—C	-0.131716	0.029746	-4.428057	0.0000
	CUB—C	-0.223799	0.049619	-4.510358	0.0000
	DEU—C	0.177455	0.036377	4.878222	0.0000
	DNK—C	0.244714	0.052524	4.659069	0.0000
	DOM—C	-0.261452	0.055407	-4.718707	0.0000
35	DZA—C	-0.202663	0.046211	-4.385593	0.0000
	ECU—C	-0.192870	0.037151	-5.191515	0.0000
	EGY—C	-0.453020	0.097865	-4.629028	0.0000
	ESP—C	0.110332	0.028792	3.832081	0.0001

FIN—C	0.168876	0.035662	4.735498	0.0000
40 FJI—C	-0.233823	0.056344	-4.149930	0.0000
FRA—C	0.186346	0.037971	4.907618	0.0000
GAB—C	0.078445	0.064909	1.208535	0.2269
GBR—C	0.150140	0.030877	4.862539	0.0000
GEO—C	-0.189259	0.046061	-4.108848	0.0000
45 GHA—C	-0.472373	0.098635	-4.789097	0.0000
GMB—C	-0.482186	0.088236	-5.464720	0.0000
GNB—C	-0.562635	0.115898	-4.854572	0.0000
GRC—C	0.127991	0.028601	4.474998	0.0000
GRL—C	0.179885	0.030051	5.986066	0.0000
50 GTM—C	-0.262862	0.056500	-4.652457	0.0000
GUY—C	-0.312539	0.052282	-5.977967	0.0000
HKG—C	-0.006477	0.018846	-0.343699	0.7311
HND—C	-0.360510	0.077647	-4.642942	0.0000
HTI—C	-0.423921	0.094045	-4.507648	0.0000
55 IDN—C	-0.423826	0.094092	-4.504394	0.0000
IND—C	-0.625306	0.118810	-5.263059	0.0000
IRL—C	0.099270	0.023988	4.138409	0.0000
IRN—C	-0.034777	0.036355	-0.956588	0.3388
IRQ—C	-0.271517	0.077482	-3.504237	0.0005
60 ISL—C	0.183444	0.030789	5.958185	0.0000
ISR—C	0.117838	0.026272	4.485221	0.0000
ITA—C	0.160096	0.032233	4.966903	0.0000
JAM—C	-0.173314	0.035177	-4.926955	0.0000
JPN—C	0.175763	0.035879	4.898706	0.0000
65 KEN—C	-0.459318	0.109019	-4.213192	0.0000
KIR—C	-0.222343	0.056360	-3.945033	0.0001
KOR—C	-0.191524	0.055517	-3.449855	0.0006
LKA—C	-0.484168	0.101000	-4.793754	0.0000
LSO—C	-0.561408	0.138618	-4.050025	0.0001
70 LUX—C	0.277305	0.058583	4.733566	0.0000
MAR—C	-0.394786	0.080972	-4.875576	0.0000
МСО—С	0.457498	0.097240	4.704822	0.0000
MDG—C	-0.518442	0.104345	-4.968532	0.0000
MEX—C	C(74)= -0.063913	0.018300	-3.492496	0.0005
75 MLI—C	-0.601184	0.127735	-4.706498	0.0000
MLT—C	-0.042741	0.032967	-1.296480	0.1949
MMR—C	-0.773176	0.163889	-4.717689	0.0000

MRT—C	-0.346585	0.067239	-5.154557	0.0000
MWI—C	-0.614457	0.135777	-4.525493	0.0000
80 MYS—C	C(80)= -0.223053	0.056818	-3.925718	0.0001
NER—C	-0.534001	0.120557	-4.429467	0.0000
NGA—C	-0.300006	0.066508	-4.510849	0.0000
NIC—C	-0.321612	0.039191	-8.206229	0.0000
NLD—C	0.210572	0.047298	4.452011	0.0000
85 NOR—C	0.293799	0.061562	4.772422	0.0000
NPL—C	-0.692232	0.139466	-4.963453	0.0000
NZL—C	0.153572	0.038108	4.029935	0.0001
OMN—C	-0.012654	0.037946	-0.333471	0.7388
PAK—C	-0.583550	0.118343	-4.931001	0.0000
90 PAN—C	-0.179718	0.040711	-4.414481	0.0000
PER—C	-0.196846	0.032592	-6.039677	0.0000
PHL—C	-0.346043	0.072419	-4.778335	0.0000
PNG—C	-0.345865	0.071360	-4.846790	0.0000
PRI—C	0.066429	0.007922	8.385786	0.0000
95 PRT—C	0.037652	0.009959	3.780528	0.0002
PRY—C	-0.252540	0.064933	-3.889237	0.0001
RWA—C	-0.635407	0.141297	-4.496966	0.0000
SAU—C	0.278707	0.057613	4.837575	0.0000
SDN—C	-0.487128	0.081195	-5.999491	0.0000
100 SEN-C	-0.420861	0.078811	-5.340101	0.0000
SGP—C	0.044131	0.005716	7.721103	0.0000
SLE—C	-0.595720	0.120473	-4.944850	0.0000
SLV—C	-0.235943	0.041661	-5.663361	0.0000
SUR—C	-0.066407	0.021288	-3.119462	0.0018
105 SWE-C	0.212940	0.050946	4.179702	0.0000
SWZ—C	-0.353707	0.068763	-5.143854	0.0000
SYC—C	-0.095222	0.049677	-1.916831	0.0553
TCD—C	-0.593813	0.089860	-6.608216	0.0000
TGO—C	-0.529967	0.102767	-5.156974	0.0000
110 THA—C	-0.395992	0.088591	-4.469899	0.0000
TTO—C	-0.064014	0.019766	-3.238636	0.0012
TUN—C	-0.313436	0.071780	-4.366632	0.0000
TUR—C	C(113)= -0.123010	0.018541	-6.634603	0.0000
URY—C	-0.083577	0.019583	-4.267810	0.0000
115 USA—C	C(115)= 0.199378	0.042692	4.670105	0.0000
VCT—C	-0.296802	0.080495	-3.687212	0.0002

ZAF—C	-0.088085	0.013689	-6.434616	0.0000
ZMB—C	-0.391928	0.067164	-5.835347	0.0000
ZWE—C	-0.408702	0.078503	-5.206173	0.0000
120 AND—D1	-0.150468	0.077860	-1.932541	0.0533
ARG—D1	-0.027725	0.020727	-1.337639	0.1811
AUS—D1	-0.068247	0.056716	-1.203308	0.2289
AUT—D1	-0.065700	0.048976	-1.341480	0.1798
BDI—D1	0.270036	0.173786	1.553846	0.1203
125 BEL—D1	-0.062075	0.047411	-1.309302	0.1905
BEN—D1	0.182536	0.124766	1.463024	0.1435
BFA—D1	0.246131	0.161827	1.520952	0.1283
BGD—D1	0.259215	0.162390	1.596249	0.1105
BHS—D1	-0.025573	0.041160	-0.621314	0.5344
130 BLZ—D1	0.129148	0.091558	1.410567	0.1584
BOL—D1	0.059123	0.087103	0.678771	0.4973
BRA—D1	C(132)= -0.004447	0.019268	-0.230782	0.8175
BWA—D1	0.185933	0.095463	1.947697	0.0515
CAF—D1	0.154345	0.130510	1.182631	0.2370
135 CAN—D1	-0.072806	0.054879	-1.326651	0.1847
CHE—D1	-0.114570	0.082543	-1.388003	0.1652
CHL—D1	0.067926	0.060518	1.122402	0.2617
CHN—D1	C(138)= 0.358790	0.170019	2.110291	0.0349
CIV—D1	0.010277	0.074906	0.137196	0.8909
140 CMR-D1	0.160804	0.103428	1.554743	0.1201
COD—D1	0.139599	0.110356	1.264985	0.2059
COG—D1	0.165365	0.078109	2.117110	0.0343
COL-D1	0.067595	0.050064	1.350182	0.1770
CRI—D1	0.011633	0.038932	0.298804	0.7651
145 CUB—D1	0.121336	0.056940	2.130959	0.0331
DEU—D1	-0.059420	0.045822	-1.296742	0.1948
DNK—D1	-0.082304	0.068600	-1.199772	0.2303
DOM-D1	0.096246	0.068894	1.397026	0.1625
DZA—D1	0.060387	0.052339	1.153778	0.2486
150 ECU—D1	0.051007	0.048279	1.056506	0.2908
EGY—D1	0.221880	0.113058	1.962529	0.0498
ESP—D1	-0.036955	0.032684	-1.130700	0.2582
FIN—D1	-0.037151	0.044433	-0.836121	0.4031
FJI—D1	0.048018	0.072487	0.662438	0.5077
155 FRA—D1	-0.066267	0.046946	-1.411570	0.1581

GAB—D1	-0.093060	0.069893	-1.331474	0.1831
GBR—D1	-0.043260	0.041364	-1.045832	0.2957
GEO—D1	0.078207	0.052330	1.494495	0.1351
GHA—D1	0.133860	0.124724	1.073247	0.2832
160 GMB—D1	0.163593	0.112073	1.459704	0.1444
GNB—D1	0.199735	0.142005	1.406535	0.1596
GRC—D1	-0.073037	0.032711	-2.232766	0.0256
GRL—D1	-0.064291	0.037281	-1.724502	0.0847
GTM—D1	0.048273	0.073442	0.657288	0.5110
165 GUY—D1	0.054938	0.076969	0.713767	0.4754
HKG—D1	0.071228	0.022838	3.118758	0.0018
HND—D1	0.107720	0.093119	1.156791	0.2474
HTI—D1	0.109538	0.113733	0.963117	0.3355
IDN—D1	0.195014	0.112014	1.740975	0.0817
170 IND—D1	0.266688	0.147950	1.802558	0.0715
IRL—D1	-0.019751	0.027972	-0.706090	0.4802
IRN—D1	-0.137593	0.052357	-2.627955	0.0086
IRQ—D1	0.095926	0.093365	1.027431	0.3043
ISL—D1	-0.059218	0.043569	-1.359154	0.1742
175 ISR—D1	-0.048499	0.033540	-1.446035	0.1482
ITA—D1	-0.042954	0.040820	-1.052299	0.2927
JAM—D1	0.036232	0.047775	0.758395	0.4483
JPN—D1	-0.032809	0.046208	-0.710016	0.4777
KEN—D1	0.146700	0.130533	1.123850	0.2611
180 KIR—D1	-0.030573	0.067945	-0.449969	0.6528
KOR—D1	0.156079	0.059309	2.631625	0.0085
LKA—D1	0.212319	0.118740	1.788097	0.0738
LSO—D1	0.198896	0.160009	1.243033	0.2139
LUX—D1	-0.072746	0.072470	-1.003800	0.3155
185 MAR—D1	0.163127	0.097125	1.679568	0.0931
MCO-D1	-0.178938	0.116757	-1.532576	0.1254
MDG—D1	0.132547	0.130797	1.013377	0.3109
MEX—D1	C(188)= 0.012418	0.026273	0.472665	0.6365
MLI—D1	0.209894	0.157226	1.334985	0.1819
190 MLT—D1	0.041920	0.034528	1.214089	0.2248
MMR—D1	0.287226	0.194705	1.475183	0.1402
MRT—D1	0.102148	0.086308	1.183520	0.2367
MWI—D1	0.173107	0.160478	1.078695	0.2808
MYS—D1	C(194)= 0.109449	0.065681	1.666368	0.0957

195 NER—D1	0.141961	0.148678	0.954822	0.3397
NGA—D1	0.014175	0.091281	0.155291	0.8766
NIC—D1	0.039145	0.065891	0.594089	0.5525
NLD—D1	-0.083304	0.056429	-1.476250	0.1399
NOR—D1	-0.090963	0.079098	-1.150005	0.2502
200 NPL—D1	0.267154	0.170641	1.565594	0.1175
NZL—D1	-0.056273	0.046973	-1.197991	0.2310
OMN—D1	0.061183	0.043088	1.419963	0.1557
PAK—D1	0.259839	0.142426	1.824388	0.0682
PAN—D1	0.056655	0.052949	1.069999	0.2847
205 PER—D1	0.025931	0.048371	0.536087	0.5919
PHL—D1	0.096451	0.094087	1.025127	0.3054
PNG—D1	0.085444	0.086278	0.990335	0.3221
PRI—D1	-0.016419	0.012352	-1.329226	0.1838
PRT—D1	-0.000182	0.012372	-0.014713	0.9883
210 PRY—D1	0.109832	0.078196	1.404572	0.1602
RWA—D1	0.226638	0.167982	1.349185	0.1773
SAU—D1	-0.283980	0.064026	-4.435352	0.0000
SDN—D1	0.159652	0.112483	1.419343	0.1559
SEN—D1	0.129840	0.099346	1.306954	0.1913
215 SGP—D1	0.042824	0.013783	3.107003	0.0019
SLE—D1	0.189970	0.147402	1.288789	0.1975
SLV—D1	-0.003212	0.056274	-0.057074	0.9545
SUR—D1	-0.017829	0.030109	-0.592172	0.5538
SWE—D1	-0.069524	0.061795	-1.125074	0.2606
220 SWZ—D1	0.174157	0.090756	1.918943	0.0550
SYC—D1	0.019358	0.054815	0.353157	0.7240
TCD—D1	0.226127	0.121777	1.856895	0.0634
TGO—D1	0.165135	0.135637	1.217479	0.2235
THA—D1	0.205764	0.105518	1.950042	0.0512
225 TTO—D1	-0.024297	0.033923	-0.716224	0.4739
TUN—D1	0.110380	0.085021	1.298265	0.1943
TUR—D1	C(227)= 0.048924	0.022437	2.180507	0.0293
URY—D1	0.009931	0.033152	0.299568	0.7645
USA—D1	C(229)= -0.064690	0.054067	-1.196488	0.2316
230 VCT-D1	0.154434	0.089315	1.729105	0.0839
ZAF—D1	C(231) = 0.009201	0.023762	0.387221	0.6986
ZMB—D1	0.094684	0.093194	1.015985	0.3097
ZWE—D1	0.154888	0.103903	1.490698	0.1361

AND—D2	-0.083429	0.080807	-1.032448	0.3019
235 ARG—D2	-0.041565	0.023335	-1.781212	0.0749
AUS—D2	0.010245	0.066759	0.153464	0.8780
AUT—D2	0.014908	0.058819	0.253465	0.7999
BDI—D2	-0.078691	0.218492	-0.360155	0.7187
BEL—D2	0.008960	0.057502	0.155815	0.8762
240 BEN—D2	-0.018589	0.156489	-0.118789	0.9054
BFA—D2	0.000204	0.198690	0.001027	0.9992
BGD—D2	0.028456	0.196651	0.144702	0.8850
BHS—D2	-0.005438	0.038771	-0.140268	0.8885
BLZ—D2	0.064187	0.093828	0.684093	0.4939
245 BOL—D2	-0.075736	0.110656	-0.684424	0.4937
BRA—D2	C(246)= -0.057058	0.019029	-2.998473	0.0027
BWA—D2	0.104852	0.099104	1.057999	0.2901
CAF—D2	-0.129269	0.177673	-0.727565	0.4669
CAN—D2	-0.016750	0.063051	-0.265654	0.7905
250 CHE—D2	-0.021882	0.096912	-0.225789	0.8214
CHL—D2	0.079042	0.050979	1.550476	0.1211
CHN—D2	C(252)= 0.258660	0.179484	1.441134	0.1496
CIV—D2	-0.168611	0.108915	-1.548098	0.1217
CMR—D2	-0.103992	0.139146	-0.747359	0.4549
255 COD—D2	-0.266082	0.169081	-1.573694	0.1156
COG—D2	-0.034766	0.092005	-0.377866	0.7055
COL—D2	-0.006936	0.055844	-0.124194	0.9012
CRI—D2	-0.028754	0.044407	-0.647516	0.5173
CUB—D2	-0.080367	0.085059	-0.944833	0.3448
260 DEU—D2	0.014048	0.055838	0.251582	0.8014
DNK—D2	0.014351	0.078508	0.182800	0.8550
DOM—D2	0.004801	0.076836	0.062478	0.9502
DZA—D2	-0.072752	0.073153	-0.994529	0.3200
ECU—D2	-0.054254	0.060089	-0.902881	0.3666
265 EGY—D2	0.064870	0.131843	0.492025	0.6227
ESP—D2	0.014698	0.038300	0.383752	0.7012
FIN—D2	0.009753	0.053618	0.181898	0.8557
FJI—D2	-0.039054	0.086064	-0.453779	0.6500
FRA—D2	0.000219	0.056531	0.003873	0.9969
270 GAB—D2	-0.119177	0.066680	-1.787303	0.0739
GBR—D2	0.019032	0.049491	0.384565	0.7006
GEO—D2	-0.312313	0.132808	-2.351606	0.0187

GHA—D2	-0.046954	0.150703	-0.311565	0.7554
GMB—D2	-0.067330	0.148767	-0.452589	0.6509
275 GNB—D2	-0.039309	0.182283	-0.215648	0.8293
GRC—D2	-0.041990	0.035431	-1.185122	0.2360
GRL—D2	-0.051187	0.051369	-0.996453	0.3191
GTM—D2	-0.065584	0.090212	-0.726996	0.4673
GUY—D2	-0.025070	0.092181	-0.271959	0.7857
280 HKG—D2	0.103076	0.031192	3.304609	0.0010
HND—D2	-0.061787	0.115402	-0.535410	0.5924
HTI—D2	-0.143453	0.156450	-0.916928	0.3592
IDN—D2	0.076408	0.124263	0.614890	0.5387
IND—D2	0.070686	0.174900	0.404154	0.6861
285 IRL—D2	0.096763	0.040768	2.373517	0.0177
IRN—D2	-0.163333	0.061730	-2.645915	0.0082
IRQ—D2	-0.005200	0.162795	-0.031939	0.9745
ISL—D2	-0.010530	0.049487	-0.212783	0.8315
ISR—D2	0.010569	0.039864	0.265131	0.7909
290 ITA—D2	0.017420	0.052145	0.334067	0.7383
JAM—D2	-0.024596	0.055705	-0.441539	0.6588
JPN—D2	0.039769	0.061141	0.650439	0.5154
KEN—D2	-0.082251	0.159293	-0.516350	0.6056
KIR—D2	-0.190724	0.099599	-1.914922	0.0556
295 KOR—D2	0.202775	0.057820	3.507022	0.0005
LKA—D2	0.082293	0.138037	0.596167	0.5511
LSO—D2	0.015549	0.183730	0.084632	0.9326
LUX—D2	0.074947	0.093690	0.799944	0.4238
MAR—D2	0.017005	0.117055	0.145272	0.8845
300 MCO-D2	-0.021487	0.138426	-0.155222	0.8767
MDG—D2	-0.134654	0.175142	-0.768823	0.4420
MEX—D2	C(302)= -0.021504	0.028940	-0.743055	0.4575
MLI—D2	-0.020670	0.187801	-0.110066	0.9124
MLT—D2	0.083618	0.033426	2.501597	0.0124
305 MMR—D2	0.026738	0.237291	0.112681	0.9103
MRT—D2	-0.074729	0.109494	-0.682496	0.4950
MWI—D2	-0.070966	0.206632	-0.343441	0.7313
MYS—D2	C(308)= 0.092091	0.068271	1.348909	0.1774
NER—D2	-0.131076	0.181438	-0.722429	0.4701
310 NGA—D2	-0.140789	0.118697	-1.186119	0.2356
NIC—D2	-0.152782	0.112509	-1.357949	0.1745

NLD—D2	0.010817	0.066299	0.163161	0.8704
NOR—D2	0.041413	0.097136	0.426342	0.6699
NPL—D2	0.026745	0.204150	0.131008	0.8958
315 NZL—D2	-0.021313	0.050164	-0.424855	0.6710
OMN—D2	0.051046	0.041124	1.241265	0.2146
PAK—D2	0.040851	0.166809	0.244898	0.8065
PAN—D2	0.004888	0.058465	0.083610	0.9334
PER—D2	-0.091712	0.066455	-1.380048	0.1676
320 PHL—D2	-0.068956	0.115879	-0.595068	0.5518
PNG—D2	-0.039093	0.105500	-0.370554	0.7110
PRI—D2	0.025483	0.025382	1.003978	0.3154
PRT—D2	0.038263	0.017621	2.171452	0.0299
PRY—D2	0.006001	0.081862	0.073302	0.9416
325 RWA—D2	-0.084146	0.220187	-0.382156	0.7024
SAU—D2	-0.209871	0.062853	-3.339075	0.0008
SDN—D2	-0.034637	0.136347	-0.254037	0.7995
SEN—D2	-0.075993	0.132813	-0.572180	0.5672
SGP—D2	0.121293	0.033879	3.580221	0.0003
330 SLE—D2	-0.145929	0.201829	-0.723032	0.4697
SLV—D2	-0.079125	0.080503	-0.982883	0.3257
SUR—D2	-0.112173	0.037571	-2.985647	0.0028
SWE—D2	-0.005879	0.069054	-0.085143	0.9322
SWZ—D2	0.075419	0.099125	0.760850	0.4468
335 SYC—D2	0.026874	0.054018	0.497502	0.6189
TCD—D2	-0.055569	0.161049	-0.345046	0.7301
TGO—D2	-0.094360	0.173483	-0.543916	0.5865
THA—D2	0.142940	0.108880	1.312814	0.1893
TTO—D2	-0.027846	0.034067	-0.817387	0.4137
340 TUN—D2	0.009487	0.102131	0.092890	0.9260
TUR—D2	C(341)= 0.020144	0.031600	0.637467	0.5238
URY—D2	0.005043	0.024769	0.203596	0.8387
USA—D2	C(343)= 0.014198	0.064549	0.219949	0.8259
VCT—D2	0.086512	0.093802	0.922284	0.3564
345 ZAF—D2	C(345)= -0.087301	0.036817	-2.371223	0.0178
ZMB—D2	-0.132269	0.131414	-1.006509	0.3142
ZWE—D2	-0.021719	0.126388	-0.171845	0.8636
AND—D3	-0.210017	0.074895	-2.804144	0.0051
ARG—D3	0.006453	0.026224	0.246083	0.8056
350 AUS—D3	-0.122572	0.054539	-2.247417	0.0247

AUT—D3	-0.121918	0.045804	-2.661698	0.0078
BDI—D3	0.394702	0.178163	2.215396	0.0268
BEL—D3	-0.119476	0.045564	-2.622171	0.0088
BEN—D3	0.311241	0.124548	2.498962	0.0125
355 BFA—D3	0.431952	0.157490	2.742728	0.0061
BGD—D3	0.467028	0.158783	2.941303	0.0033
BHS—D3	-0.115470	0.026404	-4.373148	0.0000
BLZ—D3	0.224827	0.078220	2.874309	0.0041
BOL—D3	0.190689	0.085514	2.229916	0.0258
360 BRA—D3	C(360)= 0.010909	0.019224	0.567486	0.5704
BWA—D3	0.227827	0.088169	2.583991	0.0098
CAF—D3	0.291505	0.142444	2.046447	0.0408
CAN—D3	-0.127135	0.051898	-2.449691	0.0143
CHE—D3	-0.219456	0.077236	-2.841362	0.0045
365 CHL—D3	0.146060	0.049319	2.961537	0.0031
CHN—D3	C(366)= 0.587545	0.156993	3.973932	0.0001
CIV—D3	0.078627	0.087776	0.895765	0.3704
CMR—D3	0.221430	0.113258	1.955089	0.0506
COD—D3	0.186728	0.128791	1.449855	0.1472
370 COG—D3	0.177897	0.082165	2.165118	0.0304
COL—D3	0.123732	0.050217	2.463962	0.0138
CRI—D3	0.086333	0.036673	2.354116	0.0186
CUB—D3	0.171236	0.060248	2.842204	0.0045
DEU—D3	-0.121802	0.041903	-2.906779	0.0037
375 DNK—D3	-0.164285	0.061620	-2.666096	0.0077
DOM—D3	0.188311	0.065224	2.887132	0.0039
DZA—D3	0.118609	0.056741	2.090348	0.0366
ECU—D3	0.107011	0.050889	2.102838	0.0355
EGY—D3	0.332689	0.111121	2.993942	0.0028
380 ESP—D3	-0.067797	0.032447	-2.089472	0.0367
FIN—D3	-0.096217	0.044743	-2.150454	0.0316
FJI—D3	0.123431	0.067590	1.826160	0.0679
FRA—D3	-0.129773	0.043423	-2.988619	0.0028
GAB—D3	-0.146796	0.067109	-2.187447	0.0288
385 GBR—D3	-0.091325	0.038172	-2.392490	0.0168
GEO—D3	0.105432	0.064331	1.638905	0.1013
GHA—D3	0.300313	0.119899	2.504712	0.0123
GMB—D3	0.269352	0.118615	2.270816	0.0232
GNB—D3	0.321053	0.144526	2.221420	0.0264

390 GRC—D3	-0.082832	0.032415	-2.555396	0.0106
GRL—D3	-0.101271	0.037024	-2.735290	0.0063
GTM—D3	0.140218	0.071890	1.950452	0.0512
GUY—D3	0.192648	0.073219	2.631141	0.0085
HKG—D3	0.061659	0.024679	2.498446	0.0125
395 HND—D3	0.215299	0.093338	2.306667	0.0211
HTI—D3	0.189798	0.122924	1.544030	0.1226
IDN—D3	0.318226	0.105666	3.011635	0.0026
IND—D3	0.466032	0.137864	3.380383	0.0007
IRL—D3	-0.019808	0.038315	-0.516968	0.6052
400 IRN—D3	-0.020130	0.043362	-0.464225	0.6425
IRQ—D3	0.165432	0.109843	1.506082	0.1321
ISL—D3	-0.110947	0.039910	-2.779933	0.0055
ISR—D3	-0.082211	0.029823	-2.756677	0.0059
ITA—D3	-0.114244	0.037851	-3.018255	0.0026
405 JAM—D3	0.082406	0.044627	1.846572	0.0649
JPN—D3	-0.116628	0.044075	-2.646105	0.0082
KEN—D3	0.253720	0.131662	1.927051	0.0540
KIR—D3	0.049922	0.078568	0.635399	0.5252
KOR—D3	0.228768	0.055749	4.103526	0.0000
410 LKA—D3	0.371652	0.111856	3.322595	0.0009
LSO—D3	0.389750	0.156061	2.497426	0.0125
LUX—D3	-0.150247	0.074134	-2.026701	0.0427
MAR—D3	0.283408	0.096003	2.952067	0.0032
MCO—D3	-0.309067	0.112807	-2.739787	0.0062
415 MDG—D3	0.266059	0.136459	1.949734	0.0513
MEX—D3	C(416) = 0.013689	0.021505	0.636532	0.5245
MLI—D3	0.388327	0.154156	2.519057	0.0118
MLT—D3	0.059287	0.033865	1.750706	0.0801
MMR—D3	0.632622	0.184431	3.430127	0.0006
420 MRT—D3	0.177290	0.085665	2.069577	0.0385
MWI—D3	0.363313	0.162467	2.236222	0.0254
MYS—D3	C(422)= 0.185691	0.058642	3.166513	0.0016
NER—D3	0.277726	0.151222	1.836544	0.0663
NGA—D3	0.181795	0.086790	2.094657	0.0363
425 NIC—D3	0.155846	0.070975	2.195782	0.0282
NLD—D3	-0.136292	0.053738	-2.536207	0.0112
NOR—D3	-0.181870	0.073424	-2.476984	0.0133
NPL—D3	0.467433	0.165540	2.823689	0.0048

NZL—D3	-0.103698	0.041599	-2.492770	0.0127
430 OMN—D3	0.015879	0.039162	0.405482	0.6851
PAK—D3	0.394437	0.137393	2.870861	0.0041
PAN—D3	0.136059	0.047834	2.844412	0.0045
PER—D3	0.122595	0.048204	2.543276	0.0110
PHL—D3	0.210326	0.089503	2.349920	0.0188
435 PNG—D3	0.183287	0.092265	1.986528	0.0470
PRI—D3	-0.033915	0.014962	-2.266731	0.0234
PRT—D3	-0.023073	0.011636	-1.982942	0.0474
PRY—D3	0.145025	0.074300	1.951885	0.0510
RWA—D3	0.429392	0.167543	2.562872	0.0104
440 SAU—D3	-0.275597	0.059478	-4.633626	0.0000
SDN—D3	0.335161	0.104255	3.214830	0.0013
SEN—D3	0.244358	0.101687	2.403037	0.0163
SGP—D3	0.029459	0.029684	0.992422	0.3210
SLE—D3	0.348502	0.147604	2.361068	0.0183
445 SLV—D3	0.113740	0.059638	1.907180	0.0566
SUR—D3	0.026326	0.031632	0.832263	0.4053
SWE—D3	-0.134449	0.058527	-2.297215	0.0216
SWZ—D3	0.263466	0.077681	3.391626	0.0007
SYC—D3	0.055916	0.053481	1.045530	0.2958
450 TCD—D3	0.412879	0.118398	3.487199	0.0005
TGO—D3	0.274618	0.133373	2.059027	0.0395
THA—D3	0.324162	0.093926	3.451232	0.0006
TTO—D3	0.092230	0.021408	4.308275	0.0000
TUN—D3	0.227384	0.082235	2.765037	0.0057
455 TUR—D3	C(455)= 0.094700	0.019641	4.821570	0.0000
URY—D3	0.050878	0.030237	1.682650	0.0925
USA—D3	C(457)= -0.129767	0.050865	-2.551186	0.0108
VCT—D3	0.244883	0.083653	2.927362	0.0034
ZAF—D3	C(459)= 0.035947	0.025307	1.420404	0.1556
460 ZMB—D3	0.234432	0.096229	2.436200	0.0149
ZWE—D3	0.151329	0.117630	1.286486	0.1983
AND—D4	-0.147310	0.072895	-2.020852	0.0433
ARG—D4	-0.040656	0.024639	-1.650042	0.0990
AUS—D4	-0.039063	0.054694	-0.714197	0.4751
465 AUT—D4	-0.046465	0.044217	-1.050838	0.2934
BDI—D4	0.027158	0.175400	0.154836	0.8770
BEL—D4	-0.049542	0.044638	-1.109869	0.2671

BEN—D4	0.092423	0.121641	0.759804	0.4474
BFA—D4	0.187626	0.154476	1.214598	0.2246
470 BGD—D4	0.267492	0.152436	1.754782	0.0794
BHS—D4	-0.090739	0.023403	-3.877184	0.0001
BLZ—D4	0.082265	0.078139	1.052808	0.2925
BOL-D4	0.045303	0.078713	0.575550	0.5649
BRA—D4	C(474)= -0.036503	0.021156	-1.725425	0.0845
475 BWA—D4	0.179471	0.088764	2.021888	0.0432
CAF—D4	-0.053309	0.151853	-0.351056	0.7256
CAN—D4	-0.052678	0.050808	-1.036805	0.2999
CHE—D4	-0.106648	0.076302	-1.397716	0.1623
CHL—D4	0.129442	0.049067	2.638047	0.0084
480 CHN—D4	C(480)= 0.562153	0.151754	3.704379	0.0002
CIV—D4	-0.081399	0.081317	-1.001010	0.3169
CMR—D4	0.021195	0.109536	0.193501	0.8466
COD—D4	-0.091254	0.124095	-0.735356	0.4622
COG—D4	0.014735	0.077938	0.189056	0.8501
485 COL—D4	0.062156	0.046966	1.323425	0.1858
CRI—D4	0.039695	0.033724	1.177058	0.2392
CUB—D4	0.072118	0.054318	1.327691	0.1843
DEU—D4	-0.036534	0.041687	-0.876380	0.3809
DNK—D4	-0.063914	0.059195	-1.079736	0.2803
490 DOM—D4	0.135496	0.061554	2.201257	0.0278
DZA—D4	-0.004317	0.054681	-0.078951	0.9371
ECU—D4	0.003716	0.046699	0.079574	0.9366
EGY—D4	0.173843	0.108373	1.604118	0.1088
ESP—D4	-0.034271	0.031850	-1.076025	0.2820
495 FIN—D4	-0.029957	0.040975	-0.731099	0.4648
FJI—D4	0.030932	0.064619	0.478682	0.6322
FRA—D4	-0.062629	0.042323	-1.479814	0.1390
GAB—D4	-0.183949	0.066919	-2.748847	0.0060
GBR—D4	-0.027236	0.036921	-0.737693	0.4607
500 GEO—D4	-0.001072	0.059480	-0.018023	0.9856
GHA—D4	0.136971	0.114981	1.191253	0.2336
GMB—D4	-0.000908	0.116872	-0.007769	0.9938
GNB—D4	0.052652	0.141142	0.373043	0.7091
GRC—D4	-0.114642	0.030334	-3.779343	0.0002
505 GRL—D4	-0.042445	0.037134	-1.143019	0.2531
GTM—D4	0.005903	0.069150	0.085368	0.9320

GUY—D4	0.090652	0.064930	1.396149	0.1627
HKG—D4	0.115658	0.024916	4.641941	0.0000
HND—D4	0.040926	0.092269	0.443555	0.6574
510 HTI—D4	-0.067303	0.117201	-0.574253	0.5658
IDN—D4	0.212224	0.101316	2.094682	0.0362
IND—D4	0.307837	0.131189	2.346516	0.0190
IRL—D4	0.110926	0.045535	2.436081	0.0149
IRN—D4	-0.120718	0.047688	-2.531399	0.0114
515 IRQ—D4	0.097424	0.083332	1.169114	0.2424
ISL—D4	-0.038892	0.041294	-0.941837	0.3463
ISR—D4	-0.023983	0.029259	-0.819682	0.4124
ITA—D4	-0.072506	0.035119	-2.064592	0.0390
JAM—D4	-0.035739	0.046348	-0.771106	0.4407
520 JPN—D4	-0.032880	0.042233	-0.778540	0.4363
KEN—D4	0.054845	0.128016	0.428420	0.6684
KIR—D4	-0.133806	0.075006	-1.783938	0.0745
KOR—D4	0.256889	0.055965	4.590157	0.0000
LKA—D4	0.264714	0.107917	2.452949	0.0142
525 LSO—D4	0.176526	0.149849	1.178029	0.2388
LUX—D4	-0.015538	0.071388	-0.217654	0.8277
MAR—D4	0.140099	0.090081	1.555260	0.1199
MCO—D4	-0.106593	0.112712	-0.945704	0.3443
MDG—D4	-0.032366	0.133977	-0.241576	0.8091
530 MEX—D4	C(530)= -0.024957	0.022820	-1.093623	0.2742
MLI—D4	0.122437	0.148316	0.825514	0.4091
MLT—D4	0.107646	0.035030	3.072975	0.0021
MMR—D4	0.415968	0.175133	2.375158	0.0176
MRT—D4	-0.011334	0.085867	-0.131995	0.8950
535 MWI—D4	0.079309	0.159692	0.496640	0.6195
MYS—D4	C(536)= 0.165387	0.058394	2.832254	0.0046
NER—D4	0.009084	0.146893	0.061838	0.9507
NGA—D4	-0.002931	0.081156	-0.036111	0.9712
NIC—D4	-0.021905	0.060486	-0.362156	0.7173
540 NLD—D4	-0.054501	0.052982	-1.028667	0.3037
NOR—D4	-0.061501	0.072520	-0.848056	0.3964
NPL—D4	0.233339	0.159262	1.465124	0.1429
NZL—D4	-0.047491	0.041742	-1.137740	0.2553
OMN—D4	-0.031444	0.039054	-0.805142	0.4208
545 PAK—D4	0.166839	0.134176	1.243430	0.2138
PAN—D4	0.121357	0.042383	2.863338	0.0042
PER—D4	0.046795	0.041968	1.115032	0.2649

PHL—D4	0.090230	0.085608	1.053992	0.2919
PNG—D4	0.049766	0.085765	0.580263	0.5618
550 PRI—D4	-0.012215	0.013937	-0.876472	0.3808
PRT—D4	-0.006921	0.011675	-0.592785	0.5534
PRY—D4	0.070363	0.072466	0.970973	0.3316
RWA—D4	0.185095	0.160626	1.152335	0.2492
SAU—D4	-0.261954	0.058306	-4.492744	0.0000
555 SDN—D4	0.141678	0.093303	1.518478	0.1290
SEN—D4	0.045443	0.098935	0.459322	0.6460
SGP—D4	0.135323	0.023284	5.811984	0.0000
SLE—D4	0.059652	0.153779	0.387905	0.6981
SLV—D4	-0.012744	0.057274	-0.222514	0.8239
560 SUR—D4	-0.059037	0.031508	-1.873688	0.0610
SWE—D4	-0.044557	0.057087	-0.780511	0.4351
SWZ—D4	0.151934	0.075574	2.010394	0.0444
SYC—D4	0.064994	0.050926	1.276244	0.2019
TCD—D4	0.132028	0.116045	1.137723	0.2553
565 TGO—D4	0.039921	0.128942	0.309606	0.7569
THA—D4	0.240192	0.093272	2.575177	0.0100
TTO—D4	0.029883	0.022267	1.342027	0.1796
TUN—D4	0.094006	0.079184	1.187185	0.2352
TUR—D4	C(569)= 0.100434	0.019974	5.028275	0.0000
570 URY—D4	0.053515	0.021526	2.486007	0.0130
USA—D4	C(571) = -0.040304	0.048932	-0.823685	0.4102
VCT—D4	0.138755	0.083205	1.667634	0.0955
ZAF—D4	C(573)= -0.053242	0.024067	-2.212231	0.0270
ZMB—D4	0.035484	0.088075	0.402878	0.6871
575 ZWE—D4	0.024157	0.103241	0.233989	0.8150

	Weighted S	tatistics	
R-squared	0.342232	Mean dependent var	-0.000358
Adjusted R-squared	0.266886	S.D. dependent var	0.053221
S.E. of regression	0.045569	Sum squared resid	10.40535
F-statistic	4.542147	Durbin-Watson stat	1.706694
Prob(F-statistic)	0.000000		
	Unweighted	Statistics	
R-squared	0.290712	Mean dependent var	-0.001243
Sum squared resid	10.52293	Durbin-Watson stat	1.899193

Appendix C

The Results of Wald Tests (Outputs of Eviews)

1. The Result of the Wald Test for $H_0: \beta_1 = 0$

Wald Test:

Test Statistic	Value	df	Probability	
F-statistic	18.57513	(1, 5011)	0.0000	
Chi-square	18.57513	1	0.0000	
Null Hypothesis Su	mmary:			
Normalized Restrict	ion (= 0)	Value	Std. Err.	
-C(1) - C(2)		0.120412	0.027938	

Restrictions are linear in coefficients.

Note: $-C(1) = \hat{\beta}_0$; $C(2) = \hat{\lambda}_1$

2. The Result of the Wald Test for := 0

Wald Test:

Test Statistic	Value	df	Probability
F-statistic	20.05227	(1, 5011)	0.0000
Chi-square	20.05227	1	0.0000
Null Hypothesis Su	mmary:		
Normalized Restrict	tion (= 0)	Value	Std. Err.
-C(1) - C(3)		0.192575	0.043005
-			

Restrictions are linear in coefficients.

Note: $-C(1) = \hat{\beta}_0$; $C(3) = \hat{\lambda}_1$

3. The Result of the Wald Test for := 0

Wald Test:

Test Statistic	Value	df	Probability
F-statistic	7.966911	(1, 5011)	0.0048
Chi-square	7.966911	1	0.0048

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Normalized Restriction (= 0)	Value	Std. Err.	
-C(1) - C(4)	0.068187	0.024158	

Null Hypothesis Summary:

Restrictions are linear in coefficients.

Note: $-C(1) = \hat{\beta}_0$; $C(4) = \hat{\lambda}_3$

4. The Result of the Wald Test for := 0

Wald Test:

Test Statistic	Value	df	Probability
F-statistic	41.76206	(1, 5011)	0.0000
Chi-square	41.76206	1	0.0000
Null Hypothesis Sur	nmary:		
Normalized Restriction	on (= 0)	Value	Std. Err.
-C(1) - C(5)		0.149236	0.023093

Restrictions are linear in coefficients.

Note: -C(1)= $\hat{\beta}_{0}$; C(5)= $\hat{\lambda}_{4}$

5. The Result of the Wald Test for : $y_1^* (BRA) - y_0^* (BRA) = 0$

Wald Test:

Test Statistic	Value	df	Probability
F-statistic	2.168572	(1, 5011)	0.1409
Chi-square	2.168572	1	0.1409
Null Hypothesis Su	mmary:		
Normalized Restrict	ion (= 0)	Value	Std. Err.
C(18)/C(1) + (C(18	·		
C(132))/(-C(1) - C(1)	2))	-0.158940	0.107931

Delta method computed using analytic derivatives.

Note: $C(18)/C(1) = -C(18)/(-C(1)) = -\hat{c}_0 (BRA)/\hat{\beta}_0$; (C(18) + C(132))/(-C(1) - C(2)) = $\hat{c}_1 (BRA)/\hat{\beta}_1$

Wald Test:				
Test Statistic	Value	df	Probability	
F-statistic	1.367203	(1, 5011)	0.2423	
Chi-square	1.367203	1	0.2423	
Null Hypothesis S	ummary:			
Normalized Restrict	ion (= 0)	Value	Std. Err.	
-(C(18) + C(132))/				
(C(18) + C(246))/(-C(1) - C(3))	-0.138193	0.118187	

6. The Result of the Wald Test for $H_0: y_2^*(BRA) - y_1^*(BRA) = 0$

Delta method computed using analytic derivatives.

Note:
$$(C(18) + C(132))/(-C(1) - C(2)) = c_1^{\wedge} (BRA) / \hat{\beta}_1;$$

 $(C(18) + C(246))/(-C(1) - C(3)) = (BRA)/$

7. The Result of the Wald Test for $H_0: y_3^*$ (BRA) $-y_2^*$ (BRA) = 0

Wald Test:

Test Statistic	Value	df	Probability
F-statistic	0.569852	(1, 5011)	0.4504
Chi-square	0.569852	1	0.4503

Null Hypothesis Summary:

Normalized Restriction (= 0)	Value	Std. Err.
-(C(18) + C(246))/(-C(1) - C(3)) + (C(18) + C(360))/(-C(1) - C(4))	0.087458	0.115855

Note:
$$(C(18) + C(246))/(-C(1) - C(3)) = \hat{c}_2(BRA)/\hat{\beta}_2;$$

 $(C(18) + C(360))/(-C(1) - C(4)) = \hat{c}_3(BRA)/\hat{\beta}_3$

Test Statistic	Value	df	Probability
F-statistic	0.587786	(1, 5011)	0.4433
Chi-square	0.587786	1	0.4433

8. The Result of the Wald Test for $H_0: y_4^*(BRA)) - y_3^*(BRA) = 0$

Wald Test:

Null Hypothesis Summary:

Normalized Restriction (= 0)	Value	Std. Err.	
-(C(18) + C(360))/(-C(1) - C(4)) +			
(C(18) + C(474))/(-C(1) - C(5))	-0.094479	0.123233	

Delta method computed using analytic derivatives.

Note: $(C(18) + C(360))/(-C(1) - C(4)) = \stackrel{\wedge}{c_3}(BRA))/\stackrel{\wedge}{\beta_3};$ $(C(18) + C(474))/(-C(1) - C(5)) = \stackrel{\wedge}{c_4}(BRA))/\stackrel{\wedge}{\beta_4}$

9. The Result of the Wald Test for $H_0: y_0^* (BRA) = 0$

Wald Test:

Test Statistic	Value	df	Probability
F-statistic	65.09192	(1, 5011)	0.0000
Chi-square	65.09192	1	0.0000

Null Hypothesis Summary:

Normalized Restriction (= 0)	Value	Std. Err.
-C(18) / C(1)	-0.201337	0.024955

Delta method computed using analytic derivatives.

Note:
$$-C(18)/C(1) = C(18)/(-C(1)) = \stackrel{\circ}{c_0} (BRA)/\stackrel{\circ}{\beta_0}$$

10. The Result of the Wald Test for $H_0: y_1^* (BRA) = 0$ Wald Test:

Test Statistic	Value	df	Probability
F-statistic	11.77179	(1, 5011)	0.0006
Chi-square	11.77179	1	0.0006

Null Hypothesis Summary:

Normalized Restriction (= 0)	Value	Std. Err.	
(C(18) + C(132)) / (-C(1) - C(2))	-0.360277	0.105006	

Delta method computed using analytic derivatives.

Note:
$$(C(18) + C(132))/(-C(1) - C(2)) = \stackrel{\wedge}{C_1}(BRA)/\stackrel{\wedge}{\beta_1}$$

11. The Result of the Wald Test for $H_0: y_2^* (BRA) = 0$

Wald Test:

Test Statistic	Value	df	Probability	
F-statistic	84.46333	(1, 5011)	0.0000	
Chi-square	84.46333	1	0.0000	

Null Hypothesis Summary:

Normalized Restriction (= 0)	Value	Std. Err.	
(C(18) + C(246)) / (-C(1) - C(3))	-0.498469	0.054238	

Delta method computed using analytic derivatives. *Note:* $(C(18) + C(246))/(-C(1) - C(3)) = \stackrel{\wedge}{C_2} (BRA) / \stackrel{\wedge}{\beta_2}$

12. The Result of the Wald Test for $H_0: y_3^*(BRA) = 0$ Wald Test:

Test Statistic	Value	df	Probability	
F-statistic	16.11826	(1, 5011)	0.0001	
Chi-square	16.11826	1	0.0001	

Null Hypothesis Summary:

Normalized Restriction (= 0)	Value	Std. Err.	
(C(18) + C(360)) / (-C(1) - C(4))	-0.411012	0.102375	

Delta method computed using analytic derivatives.

Note: $(C(18) + C(360))/(-C(1) - C(4)) = \stackrel{\wedge}{C_3}(BRA)/\stackrel{\wedge}{\beta_3}$

13. The Result of the Wald Test for $H_0: y_4^* (BRA) = 0$

Wald Test:

Test Statistic	Value	df	Probability	
F-statistic	54.30023	(1, 5011)	0.0000	
Chi-square	54.30023	1	0.0000	

Null Hypothesis Summary:

Normalized Restriction (= 0)	Value	Std. Err.
(C(18) + C(474)) / (-C(1) - C(5))	-0.505491	0.068598

Delta method computed using analytic derivatives.

Note:
$$(C(18) + C(474)) / (-C(1) - C(5)) = \bigwedge_{C_4}^{\circ} (BRA) / \bigwedge_{\beta_4}^{\circ}$$

14. The Result of the Wald Test for $H_0: y_0^*$ (CHN) - y_0^* (BRA) = 0

Wald Test:

Test Statistic	Value	df	Probability
F-statistic	1357.977	(1, 5011)	0.0000
Chi-square	1357.977	1	0.0000

Null Hypothesis Summary:

Normalized Restriction (= 0) Value	Std. Err.
C(18)/C(1) - C(24)/C(1) -3.279301 0).088989

Note:
$$-C(24)/C(1) = C(24)/(-C(1)) = \stackrel{\circ}{C}_{0}(CHN)/\stackrel{\circ}{\beta}_{0};$$

 $C(18)/C(1) = -C(18)/(-C(1)) = -\stackrel{\circ}{C}_{0}(BRA)/\stackrel{\circ}{\beta}_{0}$

Wald Test:				
Test Statistic	Value	df	Probability	
F-statistic	229.4352	(1, 5011)	0.0000	
Chi-square	229.4352	1	0.0000	
Null Hypothesis S	ummary:			
Normalized Restrict	tion (= 0)	Value	Std. Err.	
-(C(18) + C(132))/	/(-C(1) - C(2)) +			

-2.249928

0.148538

15. The Result of the Wald Test for $H_0: y_1^*$ (CHN) - y_1^* (BRA) = 0

Delta method computed using analytic derivatives.

(C(24) + C(138))/(-C(1) - C(2))

Note:
$$(C(24) + C(138))/(-C(1) - C(2)) = \stackrel{\circ}{C_1}(CHN)/\stackrel{\circ}{\beta_1};$$

$$(C(18) + C(132))/(-C(1) - C(2)) = \stackrel{\circ}{C_1} (BRA)/\stackrel{\circ}{\beta_1}$$

16. The Result of the Wald Test for $H_0: y_2^*$ (CHN) - y_2^* (BRA) = 0

Wald Test:

Test Statistic	Value	df	Probability
F-statistic	251.7001	(1, 5011)	0.0000
Chi-square	251.7001	1	0.0000

Null Hypothesis Summary:

Normalized Restriction (= 0)	Value	Std. Err.	
-(C(18) + C(246))/(-C(1) - C(3)) +	1 (52575	0.10/227	
(C(24) + C(252))/(-C(1) - C(3))	-1.653575	0.104227	

Note:
$$(C(24) + C(252))/(-C(1) - C(3)) = \stackrel{\wedge}{c_2} (CHN)/\stackrel{\wedge}{\beta_2};$$

 $(C(18) + C(246))/(-C(1) - C(3)) = \stackrel{\wedge}{c_2} (BRA)/\stackrel{\wedge}{\beta_2}$

Test Statistic	Value	df	Probability
F-statistic	126.0329	(1, 5011)	0.0000
Chi-square	126.0329	1	0.0000

17. The Result of the Wald Test for $H_0: y_3^*$ (CHN) - y_3^* (BRA) = 0

Wald Test:

Null Hypothesis Summary:

Normalized Restriction (= 0)	Value	Std. Err.	
-(C(18) + C(360))/(-C(1) - C(4)) +			
(C(24) + C(366))/(-C(1) - C(4))	-0.843747	0.121137	

Delta method computed using analytic derivatives.

Note: $(C(24) + C(366))/(-C(1) - C(4)) = \stackrel{\land}{C_3}(CHN)/\stackrel{\land}{\beta_3};$ $(C(18) + C(360))/(-C(1) - C(4)) = \stackrel{\land}{C_3}(BRA)/\stackrel{\land}{\beta_3}$

18. The Result of the Wald Test for $H_0: y_4^*$ (CHN) - y_4^* (BRA) = 0

Wald Test:

Test Statistic	Value	df	Probability
F-statistic	5.523785	(1, 5011)	0.0188
Chi-square	5.523785	1	0.0188

Null Hypothesis Summary:

Normalized Restriction (= 0)	Value	Std. Err.	
-(C(18) + C(474))/(-C(1) - C(5)) +			
(C(24) + C(480))/(-C(1) - C(5))	-0.237871	0.101210	

Note:
$$(C(24) + C(480))/(-C(1) - C(5)) = \stackrel{\wedge}{c_4} (CHN)/\stackrel{\wedge}{\beta_4};$$

 $(C(18) + C(474))/(-C(1) - C(5)) = \stackrel{\wedge}{c_4} (BRA)/\stackrel{\wedge}{\beta_4}$